Influence of capillary structure caracteristics on boilign intensity in heat pipe

Authors

  • Ольга Сергеевна Алексеик National Technical University "Kyiv Polytechnic Institute" Peremogy av. 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.19563

Keywords:

miniature heat pipe, heating zone, heat transfer coefficient, capillary structure

Abstract

The research results of the influence of capillary structure characteristics on the heat transfer intensity in the heating zone of miniature heat pipes are presented in the paper. Also, the research results of the influence of heat removal conditions in the condensation area on the internal characteristics of phase transition processes are given. Copper heat pipes, filled with methanol were selected as experimental samples. The capillary structure was made of copper fibers with diameters of 50 microns and 70 microns, and the length of3 mmand7 mm.

The analysis of experimental data showed that the increase in fiber diameter by 1,4 times leads to the decrease in the heat transfer intensity more than by 15 %. At the same time, the essential influence of the length change on the vaporization process in the heating zone of heat pipe was not observed.

The obtained results can be used in designing passive cooling systems of radio-electronic equipment, based on the miniature heat pipes.

Author Biography

Ольга Сергеевна Алексеик, National Technical University "Kyiv Polytechnic Institute" Peremogy av. 37, Kyiv, Ukraine, 03056

Junior Researcher, Assistant

Department of nuclear power plants and engineering thermophysics

References

  1. Shung-Wen Kang. Experimental and numerical analysis of the transient response of a miniature heat pipe [Text]/ Shung-Wen Kang, Sheng-Hong Tsai, Hong-Chih Chen // Applied Thermal Engineering. – 2002. – №22. – Р. 1559–1568.
  2. Кравец, В. Ю. Исследование термического сопротивления миниатюрных тепловых труб [Текст] / В. Ю. Кравец, Я. В. Некрашевич, А. П. Гончарова. - Восточно-Европейский журнал передовых технологий. – 2011. – № 1/9(49). – С. 55-60.
  3. Николаенко, Ю. Е. Влияние режимных параметров на теплопередающие характеристики миниатюрных тепловых труб [Текст] / Ю. Е. Николаенко, В. Ю. Кравец. – ТКЭА. – 2001. – №6. – С. 36-38.
  4. Possamai, F. C. Miniature heat pipes as compressor cooling devices [Text]/ F. C. Possamai, I. Setter, L. L. Vasiliev // Applied Thermal Engineering. – 2009. – №29. – Р. 3218–3223.
  5. Ha, J. M. The Maximum Heat Transport Capacity of Micro Heat Pipes [Text]/ J. M. Ha, G. P. Peterson // ASME J. Heat Transfer. – 1998. – Vol. 120, №4. – P. 1064-1071.
  6. Lin, L. High performance miniature heat pipe [Text]/ L. Lin, R. Ponnappanb, J. Leland // International Journal of Heat and Mass Transfer. – 2002. – №45. – Р. 3131-3142.
  7. Кравец, В. Ю. Интенсивность теплоотдачи в зоне испарения миниатюрных тепловых труб [Текст] / В. Ю. Кравец, Е. Н. Письменный, Я. В. Некрашевич, Д. Э. Сологуб // Восточно-Европейский журнал передовых технологий. – 2011. – № 6/8(54). – С. 26-31.
  8. Vasiliev, L. Heat pipes in modern heat exchangers [Text]/ L. Vasiliev // Applied Thermal Engineering. – 2005. – №25. – Р. 1–19.
  9. Kimura Yuichi. Steady and Transient Heat Transfer Characteristics of Flat Micro Heatpipe [Text] / Yuichi Kimura, Yoshio Nakamura, Junji Sotani and others // Furukawa Review. – 2005. – №27. – Р. 3-8.
  10. Семена, М. Г. Тепловые трубы с металловолкнистыми капиллярными структурами [Текст]/ М. Г. Семена, А. Н. Гершуни, В. К. Зарипов. – К: Вища шк., 1984. – 215 с.
  11. Shung-Wen Kang, Sheng-Hong Tsai, Hong-Chih Chen. (2002). Experimental and numerical analysis of the transient response of a miniature heat pipe. Applied Thermal Engineering, №22, 1559–1568.
  12. Kravets, V. Yu., Nekrashevych, Ya. V., Honcharova, A. P. (2011). Thermal resistance of miniature heat pipes. Eastern-European Journal of Enterprise Technologies, № 1(9(49)), 55-60.
  13. Nikolaenko, Yu. E., Kravets, V. Yu. (2001). Influence of regimes parameters on heat transfer characteristics of miniature heat pipes. TKEA, №6, 36-38.
  14. Possamai, F. C., Setter, I., Vasiliev, L. L. (2009). Miniature heat pipes as compressor cooling devices. Applied Thermal Engineering, №29, 3218–3223.
  15. Ha, J. M., Peterson, G. P. (1998). The Maximum Heat Transport Capacity of Micro Heat Pipes. ASME J. Heat Transfer, Vol. 120, №4, 1064-1071.
  16. Lin, L., Ponnappanb, R., Leland, J. (2002). High performance miniature heat pipe. International Journal of Heat and Mass Transfer, №45, 3131–3142.
  17. Kravets, V. Yu., Pismenniy, E. N., Nekrashevych, Ya. V. (2011) Intensity of heat exchange in evaporation zone of miniature heat pipes. Eastern-European Journal of Enterprise Technologies, № 6(8(54)), 26-31.
  18. Vasiliev, L. (2005). Heat pipes in modern heat exchangers. Applied Thermal Engineering, №25, 1–19.
  19. Kimura Yuichi. Yoshio Nakamura, Junji Sotani and others. (2005). Steady Transient Heat Transfer Characteristics of Flat Micro Heatpipe. Furukawa Review, №27, 3-8.
  20. Semena, M. H., Hershuni, A. N., Zaripov, V. K. (1984). Heat pipes with metal-fibrous capillary-porous structures. Kyiv: High school, 215.

Published

2013-12-23

How to Cite

Алексеик, О. С. (2013). Influence of capillary structure caracteristics on boilign intensity in heat pipe. Technology Audit and Production Reserves, 6(5(14), 29–31. https://doi.org/10.15587/2312-8372.2013.19563

Issue

Section

Power and energy saving