Substantiation of environmental and resource-saving technologies for void filling under underground ore mining

Authors

  • Vasil Lyashenko State Enterprise «Ukrainian Research and Design Institute of Industrial Technology», 37, Svobody str., Zhovti Vody, Dnepropetrovsk region, Ukraine, 52204, Ukraine https://orcid.org/0000-0001-8361-4179
  • Oleh Khomenko Dnipro University of Technology, 19, D. Yavornytskoho ave., Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-7498-8494
  • Vladimir Golik Federal State Budgetary Institution of Science of the Federal Science Center «Vladikavkaz Scientific Center of the Russian Academy of Sciences», 93a, Markova str., Vladikavkaz, Russian Federation, 362002, Ukraine https://orcid.org/0000-0002-1181-8452
  • Fedor Topolnij State Higher Educational Institution «Central Ukrainian National Technical University», 8, Universytetskyi ave., Kropyvnytskyi, Ukraine, 25006, Ukraine https://orcid.org/0000-0002-3363-4646
  • Olha Helevera State Higher Educational Institution «Volodymyr Vynnychenko Central Ukrainian State Pedagogical University», 1, Shevchenko str., Kropyvnytskyi, Ukraine, 25006, Ukraine https://orcid.org/0000-0002-1582-9714

DOI:

https://doi.org/10.15587/2312-8372.2020.200022

Keywords:

mountain range, underground development, void filling, environmental and resource conservation technology, mining efficiency.

Abstract

The object of research is the technology and technical means to clear the voids during the underground mining of ores in the disturbed arrays. One of the most problematic places is the filling of man-made voids that affect the occurrence and redistribution of the stress-strain state (SSS) of the rock mass. Their existence in the earth's crust provokes disturbance of the daily surface, as well as the influence of geomechanical and seismic phenomena, up to the level of earthquakes.

Analytical researches, comparative analysis of theoretical and practical results by standard and new methods with the participation of the authors are performed. The peculiarities of the manifestation of mountain pressure in the rock massifs of a complex structure are considered, due to the intensity of the fracture structures (acoustic stiffness from 0.11 to 0.18 MPa/s, impact coefficient – 0.98). The conditions of manifestation of residual bearing capacity of disturbed rocks and translation of geomaterials into the volume compression mode were investigated (in the zone of disturbed rocks the attenuation coefficient decreases to 0.04–0.15 from the initial value of 0.25–0.35). The basic estimation of durability of workings and inhomogeneous rocks with a strength of 50–150 MPa at depths up to 600 m is shown, depending on the position of workings with respect to the elements of structural disturbance and the possibility of creating reliable structures. Conclusions have been made about the efficiency of the use of load-bearing structures from rocks of greater than 0.2 m in size and mechanical strength of more than 50 MPa, which allows to expose the roof without collapsing at spans of up to 50 m. the bearing layer of the rocks produced space can be filled by insulation or a hardener with a strength of up to 1.2 MPa. The research results can be used in the underground development of ore deposits of complex structure of Ukraine, the Russian Federation, the Republic of Kazakhstan and other developed mining countries of the world.

Author Biographies

Vasil Lyashenko, State Enterprise «Ukrainian Research and Design Institute of Industrial Technology», 37, Svobody str., Zhovti Vody, Dnepropetrovsk region, Ukraine, 52204

PhD, Senior Researcher, Head of Department

Research Department

Oleh Khomenko, Dnipro University of Technology, 19, D. Yavornytskoho ave., Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Mining Engineering and Education

Vladimir Golik, Federal State Budgetary Institution of Science of the Federal Science Center «Vladikavkaz Scientific Center of the Russian Academy of Sciences», 93a, Markova str., Vladikavkaz, Russian Federation, 362002

Doctor of Technical Sciences, Professor

Geophysical Institute

Fedor Topolnij, State Higher Educational Institution «Central Ukrainian National Technical University», 8, Universytetskyi ave., Kropyvnytskyi, Ukraine, 25006

Doctor of Biological Sciences, Professor

Department of General Agriculture

Olha Helevera, State Higher Educational Institution «Volodymyr Vynnychenko Central Ukrainian State Pedagogical University», 1, Shevchenko str., Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Geography and Geoecology

References

  1. Protodiakonov, M. M. (1933). Davlenie gornykh porod i rudnichnoe kreplenie. Ch. 1. Davlenie gornykh porod. Moscow, Leningrad: Novosibirsk: Gosgortekhizdat, Ch. 1, 128.
  2. Slesarev, V. D. (1948). Opredelenie optimalnykh razmerov tselikov razlichnogo naznacheniia. Moscow, Leningrad: Ugletekhizdat Zapaduglia, 195.
  3. Borysov, A. A. (1948). Davlenye na krep horyzontalnykh vyrabotok. Moscow; Lenynhrad: Uhletekhyzdat, 104.
  4. Vetrov, S. V. (1975). Dopustimye razmery obnazhenii gornykh porod pri podzemnoi razrabotke rud. Moscow: Nauka, 223.
  5. Borisov, A. A. (1980). Mekhanika gornykh porod. Moscow: Nedra, 359.
  6. Fisenko, G. L. (1980). Predelnoe sostoianie gornykh porod vokrug vyrabotok. Moscow: Nedra, 359.
  7. Sleptsov, M. N., Azymov, R. Sh., Mosynets, V. N. (1986). Podzemnaia razrabotka mestorozhdenyi tsvetnykh y redkykh metallov. Moscow: Nedra, 206.
  8. Avdeev, O. K., Pukhalskii, V. N., Razumov, A. N. (1989). Otrabotka zapasov rudy v zone predokhranitelnogo tselika pod vodoemom. Gornyi zhurnal, 9, 28–30.
  9. Instruktsiia po bezopasnomu vedeniiu gornykh rabot na rudnykh i nerudnykh mestorozhdeniiakh (obektakh stroitelstva podzemnykh sooruzhenii), sklonnykh k gornym udaram (1989). Leningrad: VNIMI, 58.
  10. Povnyi, B. E., Golik, V. I., Liashenko, V. I. (1991). Upravlenie pogasheniem tekhnogennykh pustot. Izv. vuzov. Gornyi zhurnal, 8, 24–30.
  11. Lyashenko, V., Khomenko, O., Topolnij, F., Golik, V. (2020). Development of natural underground ore mining technologies in energy distributed massifs. Technology Audit and Production Reserves, 1 (3 (51)), 17–24. doi: http://dx.doi.org/10.15587/2312-8372.2020.195946
  12. Shtele, V. I. (1991). Stend dlia modelirovaniia geomekhanicheskikh protsessov v tolsche gornykh porod. Avtorskoe svidetelstvo 1682559 A1 (SSSR).
  13. Liashenko, V. I., Golik, V. I., Razumov, A. N., Trapenok, N. M. (1992). Prirodo- i resursosberegaiuschie tekhnologii podzemnoi razrabotki rudnykh mestorozhdenii. Moscow: Chermetinformatsiia, 103.
  14. Liashenko, V. I., Golik, V. I., Kolokolov, O. V. (1994). Sozdanie i vnedrenie prirodo- i resursosberegaiuschikh tekhnologii podzemnoi razrabotki mestorozhdenii slozhnoi struktury. Izv. vuzov. Gornyi zhurnal, 4, 31–37.
  15. Chernova, A. P. (Ed.) (2001). Dobycha i pererabotka uranovykh rud. Kyiv: Adef-Ukraina, 238.
  16. Liashenko, V. I. (2015). Nauchno-tekhnicheskie predposylki povysheniia ekologicheskoi bezopasnosti v gornodobyvaiuschem regione. Biul. Chernaia metallurgiia, 1, 21–30.
  17. Liashenko, V. I., Pukhalskii, V. N. (2015). Justification of chamber safety parameters in underground working of surface reserves of deposits under protected sites. Izv. vuzov. Gornyi zhurnal, 3, 37–49.
  18. Komaschenko, V. I., Vasilev, P. V., Maslennikov, S. A. (2016). Dependable raw materials base for underground mining the KMA deposits. Izvestiia Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 2, 101–114.
  19. Dmitrak, Y. V., Kamnev, E. N. (2015). The Leading Research and Design Institute of Industrial Technologies – A long way in 65 years. Gornyi Zhurnal, 3, 6–12. doi: http://doi.org/10.17580/gzh.2016.03.01
  20. Golik, V., Komashchenko, V., Morkun, V., Zaalishvili, V. (2015). Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry, 7 (4), 325–329.
  21. Golik, V. I., Rasorenov, Y. I., Efremenkov, A. B. (2014). Recycling of Metal Ore Mill Tailings. Applied Mechanics and Materials, 682, 363–368. doi: http://doi.org/10.4028/www.scientific.net/amm.682.363
  22. JianPing, Y., WeiZhong, C., DianSen, Y., JingQiang, Y. (2015). Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnics, 64, 20–31. doi: http://doi.org/10.1016/j.compgeo.2014.10.011
  23. Dold, B., Weibel, L. (2013). Biogeometallurgical pre-mining characterization of ore deposits: an approach to increase sustainability in the mining process. Environmental Science and Pollution Research, 20 (11), 7777–7786. doi: http://doi.org/10.1007/s11356-013-1681-2
  24. Eremenko, V. A., Lushnikov, V. N. (2018). Procedure for selecting dynamic ground support for rockbursting mining conditions. Mining Informational and Analytical Bulletin, 12, 5–12. doi: http://doi.org/10.25018/0236-1493-2018-12-0-5-12
  25. Reiter, K., Heidbach, O. (2014). 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth, 5 (2), 1123–1149. doi: http://doi.org/10.5194/se-5-1123-2014
  26. Goodarzi, A., Oraee-Mirzamani, N. (2011). Assessment of the Dynamic Loads Effect on Underground Mines Supports. 30th International Conference on Ground Control in Mining, 74–79.
  27. Sokolov, I. V., Antipin, Iu. G., Baranovskii, K. V. (2017). Construction and parameters of the combined system for developing quartz slope deposit. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 328 (10), 85–94.
  28. Smirnov, S. M., Tatarnikov, B. B., Aleksandrov, A. N. (2014). Influence of the current geodynamic mining situation on stoping-and-backfilling operations. Gornyi informatsionno-analiticheskii biulleten, 11, 45–51.
  29. Khani, A., Baghbanan, A., Norouzi, S., Hashemolhosseini, H. (2014). Effects of fracture geometry and Wittke W. Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM). Verlag: Wilhelm Ernst & Sohn, 875.
  30. Shabanimashcool, M., Li, C. C. (2015). Analytical approaches for studying the stability of laminated roof strata. International Journal of Rock Mechanics and Mining Sciences, 79, 99–108. doi: http://doi.org/10.1016/j.ijrmms.2015.06.007
  31. Wang, D. S., Chang, J. P., Yin, Z. M., Lu, Y. G. (2014). Deformation and failure characteristics of high and steep slope and the impact of underground mining. Transit Development in Rock Mechanics-Recognition, Thinking and Innovation, 451–457.
  32. Iofis, M. A., Fedorov, E. V., Esina, E. N., Miletenko, N. A. (2017). Advancement of geomechanics toward mineral wealth preservation. Gornyi Zhurnal, 11, 18–21. doi: http://doi.org/10.17580/gzh.2017.11.03
  33. Khasheva, Z. M., Golik, V. I. (2015). The ways of recovery in economy of the depressed mining enterprises of the Russian Caucasus. International Business Management, 9 (6), 1210–1216.
  34. Golik, V., Komashchenko, V., Morkun, V., Burdzieva, O. (2015). Metal deposits combined development experience. Metallurgical and Mining Industry, 7 (6), 591–594.
  35. Karaman, K., Cihangir, F., Kesimal, A. (2015). A comparative assessment of rock mass deformation modulus. International Journal of Mining Science and Technology, 25 (5), 735–740. doi: http://doi.org/10.1016/j.ijmst.2015.07.006
  36. Rudmin, M. A., Mazurov, A. K., Reva, I. V., Stebletsov, M. D. (2018). Prospects of integrated development of bakchar iron deposit (Western Siberia, Russia) Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (10), 85–94.
  37. Мухаметшин, В. В., Андреев, В. Е. (2018). Increasing the efficiency of assessing the performance of techniques aimed at expanding the use of resource potential of oilfields with hardztozrecover reserves. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (8), 30–36.
  38. Kaplunov, D. R., Radchenko, D. N. (2017). Design philosophy and choice of technologies for sustainable development of underground mines. Gornyi Zhurnal, 11, 52–59. doi: http://doi.org/10.17580/gzh.2017.11.10
  39. Lyashenko, V. I., Khomenko, O. E. (2019). Enhancement of confined blasting of ore. Mining Informational and Analytical Bulletin, 11, 59–72. doi: http://doi.org/10.25018/0236-1493-2019-11-0-59-72
  40. Lyashenko, V., Topolnij, F., Dyatchin, V. (2019). Development of technologies and technical means for storage of waste processing of ore raw materials in the tailings dams. Technology Audit and Production Reserves, 5 (3 (49)), 33–40. doi: http://doi.org/10.15587/2312-8372.2019.184940

Published

2020-03-05

How to Cite

Lyashenko, V., Khomenko, O., Golik, V., Topolnij, F., & Helevera, O. (2020). Substantiation of environmental and resource-saving technologies for void filling under underground ore mining. Technology Audit and Production Reserves, 2(3(52), 9–16. https://doi.org/10.15587/2312-8372.2020.200022

Issue

Section

Ecology and Environmental Technology: Original Research