Substantiation of environmental and resource-saving technologies for void filling under underground ore mining
DOI:
https://doi.org/10.15587/2312-8372.2020.200022Keywords:
mountain range, underground development, void filling, environmental and resource conservation technology, mining efficiency.Abstract
The object of research is the technology and technical means to clear the voids during the underground mining of ores in the disturbed arrays. One of the most problematic places is the filling of man-made voids that affect the occurrence and redistribution of the stress-strain state (SSS) of the rock mass. Their existence in the earth's crust provokes disturbance of the daily surface, as well as the influence of geomechanical and seismic phenomena, up to the level of earthquakes.
Analytical researches, comparative analysis of theoretical and practical results by standard and new methods with the participation of the authors are performed. The peculiarities of the manifestation of mountain pressure in the rock massifs of a complex structure are considered, due to the intensity of the fracture structures (acoustic stiffness from 0.11 to 0.18 MPa/s, impact coefficient – 0.98). The conditions of manifestation of residual bearing capacity of disturbed rocks and translation of geomaterials into the volume compression mode were investigated (in the zone of disturbed rocks the attenuation coefficient decreases to 0.04–0.15 from the initial value of 0.25–0.35). The basic estimation of durability of workings and inhomogeneous rocks with a strength of 50–150 MPa at depths up to 600 m is shown, depending on the position of workings with respect to the elements of structural disturbance and the possibility of creating reliable structures. Conclusions have been made about the efficiency of the use of load-bearing structures from rocks of greater than 0.2 m in size and mechanical strength of more than 50 MPa, which allows to expose the roof without collapsing at spans of up to 50 m. the bearing layer of the rocks produced space can be filled by insulation or a hardener with a strength of up to 1.2 MPa. The research results can be used in the underground development of ore deposits of complex structure of Ukraine, the Russian Federation, the Republic of Kazakhstan and other developed mining countries of the world.
References
- Protodiakonov, M. M. (1933). Davlenie gornykh porod i rudnichnoe kreplenie. Ch. 1. Davlenie gornykh porod. Moscow, Leningrad: Novosibirsk: Gosgortekhizdat, Ch. 1, 128.
- Slesarev, V. D. (1948). Opredelenie optimalnykh razmerov tselikov razlichnogo naznacheniia. Moscow, Leningrad: Ugletekhizdat Zapaduglia, 195.
- Borysov, A. A. (1948). Davlenye na krep horyzontalnykh vyrabotok. Moscow; Lenynhrad: Uhletekhyzdat, 104.
- Vetrov, S. V. (1975). Dopustimye razmery obnazhenii gornykh porod pri podzemnoi razrabotke rud. Moscow: Nauka, 223.
- Borisov, A. A. (1980). Mekhanika gornykh porod. Moscow: Nedra, 359.
- Fisenko, G. L. (1980). Predelnoe sostoianie gornykh porod vokrug vyrabotok. Moscow: Nedra, 359.
- Sleptsov, M. N., Azymov, R. Sh., Mosynets, V. N. (1986). Podzemnaia razrabotka mestorozhdenyi tsvetnykh y redkykh metallov. Moscow: Nedra, 206.
- Avdeev, O. K., Pukhalskii, V. N., Razumov, A. N. (1989). Otrabotka zapasov rudy v zone predokhranitelnogo tselika pod vodoemom. Gornyi zhurnal, 9, 28–30.
- Instruktsiia po bezopasnomu vedeniiu gornykh rabot na rudnykh i nerudnykh mestorozhdeniiakh (obektakh stroitelstva podzemnykh sooruzhenii), sklonnykh k gornym udaram (1989). Leningrad: VNIMI, 58.
- Povnyi, B. E., Golik, V. I., Liashenko, V. I. (1991). Upravlenie pogasheniem tekhnogennykh pustot. Izv. vuzov. Gornyi zhurnal, 8, 24–30.
- Lyashenko, V., Khomenko, O., Topolnij, F., Golik, V. (2020). Development of natural underground ore mining technologies in energy distributed massifs. Technology Audit and Production Reserves, 1 (3 (51)), 17–24. doi: http://dx.doi.org/10.15587/2312-8372.2020.195946
- Shtele, V. I. (1991). Stend dlia modelirovaniia geomekhanicheskikh protsessov v tolsche gornykh porod. Avtorskoe svidetelstvo 1682559 A1 (SSSR).
- Liashenko, V. I., Golik, V. I., Razumov, A. N., Trapenok, N. M. (1992). Prirodo- i resursosberegaiuschie tekhnologii podzemnoi razrabotki rudnykh mestorozhdenii. Moscow: Chermetinformatsiia, 103.
- Liashenko, V. I., Golik, V. I., Kolokolov, O. V. (1994). Sozdanie i vnedrenie prirodo- i resursosberegaiuschikh tekhnologii podzemnoi razrabotki mestorozhdenii slozhnoi struktury. Izv. vuzov. Gornyi zhurnal, 4, 31–37.
- Chernova, A. P. (Ed.) (2001). Dobycha i pererabotka uranovykh rud. Kyiv: Adef-Ukraina, 238.
- Liashenko, V. I. (2015). Nauchno-tekhnicheskie predposylki povysheniia ekologicheskoi bezopasnosti v gornodobyvaiuschem regione. Biul. Chernaia metallurgiia, 1, 21–30.
- Liashenko, V. I., Pukhalskii, V. N. (2015). Justification of chamber safety parameters in underground working of surface reserves of deposits under protected sites. Izv. vuzov. Gornyi zhurnal, 3, 37–49.
- Komaschenko, V. I., Vasilev, P. V., Maslennikov, S. A. (2016). Dependable raw materials base for underground mining the KMA deposits. Izvestiia Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 2, 101–114.
- Dmitrak, Y. V., Kamnev, E. N. (2015). The Leading Research and Design Institute of Industrial Technologies – A long way in 65 years. Gornyi Zhurnal, 3, 6–12. doi: http://doi.org/10.17580/gzh.2016.03.01
- Golik, V., Komashchenko, V., Morkun, V., Zaalishvili, V. (2015). Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry, 7 (4), 325–329.
- Golik, V. I., Rasorenov, Y. I., Efremenkov, A. B. (2014). Recycling of Metal Ore Mill Tailings. Applied Mechanics and Materials, 682, 363–368. doi: http://doi.org/10.4028/www.scientific.net/amm.682.363
- JianPing, Y., WeiZhong, C., DianSen, Y., JingQiang, Y. (2015). Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnics, 64, 20–31. doi: http://doi.org/10.1016/j.compgeo.2014.10.011
- Dold, B., Weibel, L. (2013). Biogeometallurgical pre-mining characterization of ore deposits: an approach to increase sustainability in the mining process. Environmental Science and Pollution Research, 20 (11), 7777–7786. doi: http://doi.org/10.1007/s11356-013-1681-2
- Eremenko, V. A., Lushnikov, V. N. (2018). Procedure for selecting dynamic ground support for rockbursting mining conditions. Mining Informational and Analytical Bulletin, 12, 5–12. doi: http://doi.org/10.25018/0236-1493-2018-12-0-5-12
- Reiter, K., Heidbach, O. (2014). 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth, 5 (2), 1123–1149. doi: http://doi.org/10.5194/se-5-1123-2014
- Goodarzi, A., Oraee-Mirzamani, N. (2011). Assessment of the Dynamic Loads Effect on Underground Mines Supports. 30th International Conference on Ground Control in Mining, 74–79.
- Sokolov, I. V., Antipin, Iu. G., Baranovskii, K. V. (2017). Construction and parameters of the combined system for developing quartz slope deposit. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 328 (10), 85–94.
- Smirnov, S. M., Tatarnikov, B. B., Aleksandrov, A. N. (2014). Influence of the current geodynamic mining situation on stoping-and-backfilling operations. Gornyi informatsionno-analiticheskii biulleten, 11, 45–51.
- Khani, A., Baghbanan, A., Norouzi, S., Hashemolhosseini, H. (2014). Effects of fracture geometry and Wittke W. Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM). Verlag: Wilhelm Ernst & Sohn, 875.
- Shabanimashcool, M., Li, C. C. (2015). Analytical approaches for studying the stability of laminated roof strata. International Journal of Rock Mechanics and Mining Sciences, 79, 99–108. doi: http://doi.org/10.1016/j.ijrmms.2015.06.007
- Wang, D. S., Chang, J. P., Yin, Z. M., Lu, Y. G. (2014). Deformation and failure characteristics of high and steep slope and the impact of underground mining. Transit Development in Rock Mechanics-Recognition, Thinking and Innovation, 451–457.
- Iofis, M. A., Fedorov, E. V., Esina, E. N., Miletenko, N. A. (2017). Advancement of geomechanics toward mineral wealth preservation. Gornyi Zhurnal, 11, 18–21. doi: http://doi.org/10.17580/gzh.2017.11.03
- Khasheva, Z. M., Golik, V. I. (2015). The ways of recovery in economy of the depressed mining enterprises of the Russian Caucasus. International Business Management, 9 (6), 1210–1216.
- Golik, V., Komashchenko, V., Morkun, V., Burdzieva, O. (2015). Metal deposits combined development experience. Metallurgical and Mining Industry, 7 (6), 591–594.
- Karaman, K., Cihangir, F., Kesimal, A. (2015). A comparative assessment of rock mass deformation modulus. International Journal of Mining Science and Technology, 25 (5), 735–740. doi: http://doi.org/10.1016/j.ijmst.2015.07.006
- Rudmin, M. A., Mazurov, A. K., Reva, I. V., Stebletsov, M. D. (2018). Prospects of integrated development of bakchar iron deposit (Western Siberia, Russia) Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (10), 85–94.
- Мухаметшин, В. В., Андреев, В. Е. (2018). Increasing the efficiency of assessing the performance of techniques aimed at expanding the use of resource potential of oilfields with hardztozrecover reserves. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329 (8), 30–36.
- Kaplunov, D. R., Radchenko, D. N. (2017). Design philosophy and choice of technologies for sustainable development of underground mines. Gornyi Zhurnal, 11, 52–59. doi: http://doi.org/10.17580/gzh.2017.11.10
- Lyashenko, V. I., Khomenko, O. E. (2019). Enhancement of confined blasting of ore. Mining Informational and Analytical Bulletin, 11, 59–72. doi: http://doi.org/10.25018/0236-1493-2019-11-0-59-72
- Lyashenko, V., Topolnij, F., Dyatchin, V. (2019). Development of technologies and technical means for storage of waste processing of ore raw materials in the tailings dams. Technology Audit and Production Reserves, 5 (3 (49)), 33–40. doi: http://doi.org/10.15587/2312-8372.2019.184940
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vasil Lyashenko, Oleh Khomenko, Vladimir Golik, Fedor Topolnij, Olha Helevera
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.