Purification of mineralized waters from U(VI) compounds using bentonite/iron oxide composites
DOI:
https://doi.org/10.15587/2706-5448.2020.205146Keywords:
water purification, sorption of uranium (VI), bentonite, montmorillonite, iron oxide hydroxides, saline water, heavy metals.Abstract
The object of research is bentonite clays, the main rock-forming mineral of which is montmorillonite. This natural silicate exhibits sorption capacity for heavy metal ions due to its high cation exchange capacity and specific surface area. One of the most problematic uses of montmorillonite in sorption processes is the ability to swell in aqueous media. This greatly complicates the separation of the spent sorbent from purified water. To eliminate this drawback, granulation is most often used, followed by heat treatment. Moreover, various polymer compounds are used as a structure-forming agent. This technique leads to a significant decrease in the specific surface of bentonite clays, and, therefore, deterioration in their sorption properties. In the course of the study, the method of surface modification of montmorillonite iron oxide-hydroxide (ferrihydrite) is used. The resulting materials are distinguished by manufacturability and increased sorption ability with respect to uranium compounds. This is due to the fact that when treating the surface of bentonite clays with ferrihydrite, effective sorbents can be obtained that lose their ability to swell without heat treatment. The deposition of a layer of iron oxide compounds on the surface of montmorillonite led to a change in the parameters of the porous structure of the resulting composite. So, the specific surface of the modified sample is 250 m2/g, which is significantly higher than that for the output mineral (89 m2/g). At the same time, the average pore size increased 2.8 times. It has been shown that as a result of surface treatment of montmorillonite with ferrihydrite, the sorption capacity of materials for uranium compounds increases with an increase in the iron content on the surface: from 0.42 mg/g for the initial montmorillonite to 10.13 mg/g for the modified sample. It is found that the presence of competitive metals (As, Mn, Co, Cd, Cr) in mineralized waters in equimolar amounts does not lead to a significant change in the values of uranium adsorption on bentonite/iron oxide composites.
References
- Kornilovych, B. Yu., Sorokin, O. H., Pavlenko, V. M., Koshyk, Yu. Y. (2011). Pryrodookhoronni tekhnolohii v uranovydobuvnii ta pererobnii promyslovosti. Kyiv, 156.
- Liu, B., Peng, T., Sun, H., Yue, H. (2017). Release behavior of uranium in uranium mill tailings under environmental conditions. Journal of Environmental Radioactivity, 171, 160–168. doi: http://doi.org/10.1016/j.jenvrad.2017.02.016
- Merkel, B., Schipek, M. (2011). The New Uranium Mining Boom. Berlin, Heidelberg: Springer, 848. doi: http://doi.org/10.1007/978-3-642-22122-4
- Guidelines for Drinking-water Quality. Fourth Edition. Recommendation (2011). World Health Organization. WHO, 564. Available at: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=27986ECA8EB82D1198DAED796EC75484?sequence=1
- Drinking Water Requirements for States and Public Water Systems. Available at: https://www.epa.gov/dwreginfo
- NRBU-97. Derzhavni hihiienichni normatyvy. Normy radiatsiinoi bezpeky Ukrainy (1997). Kyiv, 131.
- Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42 (6), 547–569. doi: http://doi.org/10.1016/0016-7037(78)90001-7
- Langmuir, D. (1997). Aqueous Environmental Geochemistry. New York: Prentice Hall, 603.
- Kornilovych, B., Wireman, M., Ubaldini, S., Guglietta, D., Koshik, Y., Caruso, B., Kovalchuk, I. (2018). Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies. Metals, 8 (6), 408. doi: http://doi.org/10.3390/met8060408
- Kovalchuk, I. A., Pylypenko, I. V., Kornilovych, B. Yu., Bashchak, O. Ye. (2019). Sorbtsiine ochyshchennia mineralizovanykh pidzemnykh vod vid spoluk uranu z vykorystanniam pilarovanykh hlyn. Dopovidi Natsionalnoi akademii nauk Ukrainy, 10, 80–88.
- Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92 (10), 2355–2388. doi: http://doi.org/10.1016/j.jenvman.2011.06.009
- Nekhunguni, P. M., Tavengwa, N. T., Tutu, H. (2017). Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: Assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions. Journal of Environmental Management, 204, 571–582. doi: http://doi.org/10.1016/j.jenvman.2017.09.034
- Jung, H. B., Xu, H., Konishi, H., Roden, E. E. (2016). Role of nano-goethite in controlling U(VI) sorption-desorption in subsurface soil. Journal of Geochemical Exploration, 169, 80–88. doi: http://doi.org/10.1016/j.gexplo.2016.07.014
- Tarasevich, Iu.I. (1981). Prirodnye sorbenty v processakh ochistki vody. Kyiv: Naukova dumka, 208.
- Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407–418. doi: http://doi.org/10.1016/j.jenvman.2010.11.011
- Akbal, F., Camcı, S. (2010). Comparison of Electrocoagulation and Chemical Coagulation for Heavy Metal Removal. Chemical Engineering & Technology, 33 (10), 1655–1664. doi: http://doi.org/10.1002/ceat.201000091
- Gavrilescu, M., Pavel, L. V., Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 163 (2-3), 475–510. doi: http://doi.org/10.1016/j.jhazmat.2008.07.103
- Selvakumar, R., Ramadoss, G., Mridula P. Menon, Rajendran, K., Thavamani, P., Ravi Naidu, Megharaj, M. (2018). Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of Environmental Radioactivity, 192, 592–603. doi: http://doi.org/10.1016/j.jenvrad.2018.02.018
- Tavengwa, N. T., Cukrowska, E., Chimuka, L. (2014). Preparation, characterization and application of NaHCO3 leached bulk U(VI) imprinted polymers endowed with γ-MPS coated magnetite in contaminated water. Journal of Hazardous Materials, 267, 221–228. doi: http://doi.org/10.1016/j.jhazmat.2013.12.053
- Li, P., Wang, J., Wang, X., He, B., Pan, D., Liang, J. et. al. (2018). Arsenazo-functionalized magnetic carbon composite for uranium(VI) removal from aqueous solution. Journal of Molecular Liquids, 269, 441–449. doi: http://doi.org/10.1016/j.molliq.2018.08.073
- Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144 (1-3), 15–18. doi: http://doi.org/10.1016/j.micromeso.2011.03.024
- Misaelides, P. (2019). Clay minerals and zeolites for radioactive waste immobilization and containment. Modified Clay and Zeolite Nanocomposite Materials. Elsevier Inc., 243–274. doi: http://doi.org/10.1016/b978-0-12-814617-0.00004-9
- Zhengji, Y. (2010). Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides. Journal of Environmental Radioactivity, 101 (9), 700–705. doi: http://doi.org/10.1016/j.jenvrad.2010.04.009
- Tsuruta, T. (2007). Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits. American Journal of Environmental Sciences, 3 (2), 60–66. doi: http://doi.org/10.3844/ajessp.2007.60.66
- Wu, Y., Pang, H., Liu, Y., Wang, X., Yu, S., Fu, D. et. al. (2019). Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 246, 608–620. doi: http://doi.org/10.1016/j.envpol.2018.12.076
- Vareda, J. P., Valente, A. J. M., Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. doi: http://doi.org/10.1016/j.jenvman.2019.05.126
- Noubactep, C., Schoner, A., Meinrath, G. (2006). Mechanism of uranium removal from the aqueous solution by elemental iron. Journal of Hazardous Materials, 132 (2-3), 202–212. doi: http://doi.org/10.1016/j.jhazmat.2005.08.047
- Shin, Y., Bae, S., Lee, W. (2013). Formation of surface mediated iron colloids during U(VI) and nZVI interaction. Advances in Environmental Research, 2 (3), 167–177. doi: http://doi.org/10.12989/aer.2013.2.3.167
- Duff, M. C., Coughlin, J. U., Hunter, D. B. (2002). Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66 (20), 3533–3547. doi: http://doi.org/10.1016/s0016-7037(02)00953-5
- Jeon, B.-H., Dempsey, B. A., Burgos, W. D., Barnett, M. O., Roden, E. E. (2005). Chemical Reduction of U(VI) by Fe(II) at the Solid−Water Interface Using Natural and Synthetic Fe(III) Oxides. Environmental Science & Technology, 39 (15), 5642–5649. doi: http://doi.org/10.1021/es0487527
- Wazne, M., Korfiatis, G. P., Meng, X. (2003). Carbonate Effects on Hexavalent Uranium Adsorption by Iron Oxyhydroxide. Environmental Science & Technology, 37 (16), 3619–3624. doi: http://doi.org/10.1021/es034166m
- Mahoney, J. J., Cadle, S. A., Jakubowski, R. T. (2009). Uranyl Adsorption onto Hydrous Ferric Oxide – A Re-Evaluation for the Diffuse Layer Model Database. Environmental Science & Technology, 43 (24), 9260–9266. doi: http://doi.org/10.1021/es901586w
- Gilbert, B., Ono, R. K., Ching, K. A., Kim, C. S. (2009). The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. Journal of Colloid and Interface Science, 339 (2), 285–295. doi: http://doi.org/10.1016/j.jcis.2009.07.058
- Van der Zee, C., Roberts, D. R., Rancourt, D. G., Slomp, C. P. (2003). Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 31 (11), 993–996. doi: http://doi.org/10.1130/g19924.1
- Scwertmann, U., Cornell, R. M. (2000). Iron Oxides in the Laboratory, Preparation and Characterisation. Weinheim: WILEY-VCH Verlag GmbH, 204.
- Rouquerol, F., Rouquerol, J., Sing, K. S., Llewellyn, P., Maurin, G. (2014). Adsorption by powders and porous solids. Elsevier Collection, 646.
- Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309 (2), 194–224. doi: http://doi.org/10.1016/j.jcis.2006.12.075
- Ohshima, H. (1994). A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. Journal of Colloid and Interface Science, 168, 269–271. doi: http://doi.org/10.1006/jcis.1994.1419
- Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361–1403. doi: http://doi.org/10.1021/ja02242a004
- Freundlich, H., Heller, W. (1939). The Adsorption ofcis- andtrans-Azobenzene. Journal of the American Chemical Society, 61 (8), 2228–2230. doi: http://doi.org/10.1021/ja01877a071
- Puigdomènech, I., Colàs, E., Grivé, M., Campos, I., García, D. (2014). A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Proceedings, 1665, 111–116. doi: http://doi.org/10.1557/opl.2014.635
- Brindley, G. W., Brown, G. (1980). Crystal Structures of Clay Minerals and Their X-Ray Identification. London: Mineral. Soc., 496. doi: http://doi.org/10.1180/mono-5
- Borgnino, L., Avena, M. J., De Pauli, C. P. (2009). Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341 (1-3), 46–52. doi: http://doi.org/10.1016/j.colsurfa.2009.03.037
- Yuan, P., Annabi-Bergaya, F., Tao, Q., Fan, M., Liu, Z., Zhu, J. et. al. (2008). A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. Journal of Colloid and Interface Science, 324 (1-2), 142–149. doi: http://doi.org/10.1016/j.jcis.2008.04.076
- Karnaukhov, A. P. (1999). Adsorbciia. Tekstura dispersnikh i poristikh materialov. Novosibirsk: Nauka. Sib. Predpr. RAN, 470.
- Leroy, P., Revil, A. (2004). A triple-layer model of the surface electrochemical properties of clay minerals. Journal of Colloid and Interface Science, 270 (2), 371–380. doi: http://doi.org/10.1016/j.jcis.2003.08.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Iryna Kovalchuk, Viktoriia Tobilko, Yurii Kholodko, Nataliia Zahorodniuk, Borys Kornilovych
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.