Improvement of the control process of the heat treatment of iron ore pellets in the preheating area of the conveyor-type roasting machine

Authors

DOI:

https://doi.org/10.15587/2706-5448.2020.218171

Keywords:

conveyor-type roasting machine, iron ore pellets, technological preheating zone, heat treatment, fuzzy logic.

Abstract

The object of research is the process of heat treatment of iron ore pellets. To study it, a technological zone of pre-heating of a conveyor-type roasting machine was used. Technological process control is performed on the basis of fuzzy and incomplete information about the state of this zone. One of the main requirements regarding the functioning of the technological preheating zone is to ensure the regulatory values of the thermal and gas modes when changing the speed of movement of the conveyor belt carts. Efficiency improvement of control of these modes is provided thanks to the automatic control system, implemented on the basis of fuzzy and incomplete information on the state of the technological parameters of the zone.

In the course of the study, the analysis of scientific and technical information was carried out and the analytical method determined the importance of improving the process of controlling the thermal process of processing iron ore pellets in the technological preheating zone. On the basis of experimental studies, the features of the technological process have been taken into account, it requires the improvement of the process of controlling the operation of the technological preheating zone. The mathematical model uses the temperature of the coolant of the gas-air flow, the flow rate of natural gas and air, the temperature of the pellet bed and their mass on the carriages of the conveyor belt of the machine. At the same time, the output technological parameters of the drying zone and the input parameters of the firing zone are taken into account.

On the basis of solving systems of fuzzy functions and the principles of parametric identification, a mathematical model is proposed that approximates the dynamics of the thermal process of processing iron ore pellets in the technological preheating zone. The characteristics of transient processes of heat treatment of pellets obtained on mathematical models are analyzed taking into account the variable parameters of the adjacent technological zones of the machine, the consumption of natural gas and air. On the basis of mathematical modeling, studies have been carried out to determine the optimal distribution of the coolants of the gas-air flow over the technological preheating zone. The hardware and software for the automatic control system for the heat treatment of pellets taking into account the variable parameters of the coolants of the gas-air flows in the technological preheating zone has been implemented.

Author Biography

Oleksandr Mytrofanov, Kryvyi Rih National University, 11, Vitaliia Matusevycha str., Kryvyi Rih, Ukraine, 50027

Postgraduate Student

Department of Automation, Computer Science and Technology

References

  1. Iurev, B. P., Spirin, N. A., Sheshukov, O. Iu., Goltsev, V. A., Shevchenko, O. I., Metelkin, A. A. (2018). Razrabotka tekhnologii dlia proizvodstva zhelezorudnykh okatyshei s vysokimi metallurgicheskimi svoistvami. Nizhnii Tagil: NTI (filial) UrFU, 172.
  2. Kopot, N. N., Vorobev, A. B., Goncharov, S. S., Butkarev, A. A., Butkarev, A. P. (2010). Comparison of Heating Systems in Conveyer Roasting Machines. Stal, 3, 8–13.
  3. Lobov, V. Y., Yefymenko, L. I. Tykhanskyi, M. P. (2020). Fuzzy control of the heat treatment of iron ore pellets in the drying zone of a conveyor-type roasting machine. Jornal of Kryvyi Rih National University, 50, 179–186. doi: http://doi.org/10.31721/2306-5451-2020-1-50-179-186
  4. Lobov, V. I., Kotliar, M. O. (2015). Temperature distribution model of the iron ore pellets layer inside the combustion chamber of the belt kiln burning zone. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 109–117.
  5. Krivonosov, V. A., Pirmatov, D. S. (2013). Povyshenie effektivnosti upravleniia obzhigom okatyshei v konveiernoi obzhigovoi mashine. Materialy nauchno-tekhnicheskoi konferentsii informatsionnye tekhnologii v metallurgii i mashinostroenii. Dnepropetrovsk: NatsMetAU, 50–52.
  6. Lobov, V., Lobova, K., Koltiar, M. (2015). Investigation of temperature distribution along the height of the layer of pellets on conveyor roasting machine. Metallurgical and Mining Industry, 4, 34–38.
  7. Krivonosov, V. A., Pirmatov, D. S. (2013). Optimizatsiia rezhima termoobrabotki okatyshei v ASU TP konveiernoi obzhigovoi mashiny. Inzhenernii vestnik Dona, 3. Available at: http://www.ivdon.ru/magazine/archive/n3v2013/1754
  8. Burakov, M. V., Konovalov, A. S. (2011). Sintez nechetkikh logicheskikh reguliatorov. Informatsionno – upravliaiuschie sistemy, 1, 22–27.
  9. Lobov, V. Y., Lobova, K. V. (2017). Nechitke upravlinnia rezhymom termichnoi obrobky zalizorudnykh kotuniv na konveiernii mashyni. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriia: Tekhnichni nauky, 34, 182–191. Available at: http://nbuv.gov.ua/UJRN/vpdty_2017_34_28
  10. Barati, M. (2008). Dynamic simulation of pellet induration process in straight-grate system. International Journal of Mineral Processing, 89 (1-4), 30–39. doi: http://doi.org/10.1016/j.minpro.2008.09.008
  11. Panic, B., Janiszewski, K. (2014). Model investigations 3D of gas-powder two-phase flow in descending packed bed in metallurgical shaft furnaces. Metalurgija, 53, 331–334.
  12. Molodetska, K. V., Suhoniak, I. I., Shevchuk, M. M. (2013). Model pidsystemy pidtrymky pryiniattia rishen z upravlinnia rukhom transportu na rehulovanykh perekhrestiakh na bazi aparatu nechitkoi lohiky. Systemy ozbroiennia i viiskova tekhnika, 2 (34), 128–131.
  13. Yevsina, N. O. (2016). Syntez nechitkoho rehuliatora dlia systemy upravlinnia protsesom sushinnia kapiliarno-porystykh materialiv. Kharkiv, 21.
  14. Hariri Asli, K., Ogli Aliyev, S. A., Thomas, S., Gopakumar, D. A. (Eds.) (2017). Handbook of Research for Fluid and Solid Mechanics: Theory, Simulation, and Experiment. CRC Press, 312. doi: http://doi.org/10.1201/9781315365701
  15. Chaudhuri, A., Mandaviya, K., Badelia, P., K Ghosh, S. (2017). Optical Character Recognition Systems for Different Languages with Soft Computing. Springer. doi: http://doi.org/10.1007/978-3-319-50252-6
  16. Yanase, J., Triantaphyllou, E. (2019). The seven key challenges for the future of computer-aided diagnosis in medicine. International Journal of Medical Informatics, 129, 413–422. doi: http://doi.org/10.1016/j.ijmedinf.2019.06.017
  17. Sariyildiz, E., Ohnishi, K. (2013). Analysis the robustness of control systems based on disturbance observer. International Journal of Control, 86 (10), 1733–1743. doi: http://doi.org/10.1080/00207179.2013.795663
  18. Arakelov, O., Goncharenko, B. (2018). Synthesis of modal regulators with an observer of Luangberger of a state object. Suchasni metody, informatsiine, prohramne ta tekhnichne zabezpechennia system keruvannia orhanizatsiino-tekhnichnymy ta tekhnolohichnymy kompleksamy. Kyiv: NUKhT, 229.

Published

2020-12-30

How to Cite

Mytrofanov, O. (2020). Improvement of the control process of the heat treatment of iron ore pellets in the preheating area of the conveyor-type roasting machine. Technology Audit and Production Reserves, 6(1(56), 34–39. https://doi.org/10.15587/2706-5448.2020.218171

Issue

Section

Reports on research projects