Influence of constructive and geometric parameters of the end cutters on the microprofile characteristics of casting surfaces
DOI:
https://doi.org/10.15587/2706-5448.2021.229180Keywords:
mechanical surface treatment, surface quality parameters, surface microprofile, functionally oriented design, technological routeAbstract
The object of research is the technological route of machining of an aluminum alloy casting. The research carried out is based on the basic principles of functionally oriented design of technological processes in the manufacture of products. The main hypothesis of the study is the need for a systematic approach to study the effect of cutting modes of a certain method of machining on the provision of quality parameters in the technological system (machine – device – tool – workpiece). In traditional automated systems for technological preparation of production, an object-oriented principle of designing technological processes is implemented, which provides for the step-by-step implementation of interrelated stages based on a prototyping algorithm without a functional analysis of the operational characteristics of the product. The processing of functional, mating surfaces, ensuring that the product performs its service purpose, must be implemented according to the principle of function-oriented design (FODT). A characteristic feature of FOT is the technological provision of effective operational characteristics of the product in compliance with the parameters of accuracy and quality of the surface layer of the product intended by the designer. The paper deals with the influence of the structural and geometric parameters of end mills manufactured by Sandvick (Sandviken, Sweden) on the formation of microrelief parameters of an aluminum alloy casting profile during machining on a numerically controlled vertical milling center (CNC) HAAS MINIMILL (USA). An atypical option for the FOT principle of the technological route of machining the surfaces of workpieces of machine-building products has been applied. Its feature is ignoring the requirements of the manufacturer of metal-cutting tools, which is an important element of the technological system (machine – tool – device – workpiece), regarding its use for a particular machine tool at a certain technological transition of machining. The performance criteria were the height and step characteristics of the microrelief of the profile of the surface layer of the workpiece being processed. The operating conditions of machine-building products have been determined, which make it possible to establish, in case of deviation from the manufacturer's recommendations at the stage of technological preparation of production, the rational elements of a certain technological system: a metal-cutting machine – a device – a metal-cutting tool – a workpiece and processing modes to ensure the necessary operational characteristics.
References
- Kusyi, Ya., Stupnytskyy, V. (2020). Optimization of the Technological Process Based on Analysis of Technological Damageability of Casting. Advances in Design, Simulation and Manufacturing III. The Innovation Exchange, DSMIE-2020. Vol. 1: Manufacturing and Materials Engineering. Kharkiv, 276–284. doi: http://doi.org/10.1007/978-3-030-50794-7_27
- Gubaydulina, R. H., Gruby, S. V., Davlatov, G. D. (2016). Analysis of the Lifecycle of Mechanical Engineering Products. IOP Conference Series: Materials Science and Engineering, 142, 012060. doi: http://doi.org/10.1088/1757-899x/142/1/012060
- Aftanaziv, I. S., Shevchuk, L. I., Strohan, O. I., Kuk, A. M., Samsin, I. L. (2019). Improving reliability of drill pipe by strengthening of thread connections of its elements. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 22–29. doi: http://doi.org/10.29202/nvngu/2019-4/8
- Pronikov, A. S. (2002). Parametricheskaia nadezhnost mashin. Moscow: Izd-vo MGTU im. N. E. Baumana, 560.
- Suslov, A. G., Dalskii, A. M. (2002). Nauchnye osnovy tekhnologii mashinostroeniia. Moscow: Mashinostroenie, 684.
- Suslov, A. G. (2000). Kachestvo poverkhnostnogo sloia detalei mashin. Moscow: Mashinostroenie, 320.
- Kheifetz, M. L., Vasilyev, A. S., Klimenko, S. A. (2019). Technological Control of the Heredity of Operational Quality Parameters for Machine Parts. Advanced Materials & Technologies, 2 (14), 8–18. doi: http://doi.org/10.17277/amt.2019.02.pp.008-018
- Stupnytskyy, V. (2013). Features of Functionally-Oriented Engineering Technologies in Concurrent Environment. International Journal of Engineering Research & Technology, 2 (9), 1181–1186.
- Lachmayer, R., Mozgova, I., Reimche, W., Colditz, F., Mroz, G., Gottwald, P. (2014). Technical Inheritance: A Concept to Adapt the Evolution of Nature to Product Engineering. Procedia Technology, 15, 178–187. doi: http://doi.org/10.1016/j.protcy.2014.09.070
- Kusyi, Y. M., Kuk, A. M. (2020). Investigation of the technological damageability of castings at the stage of design and technological preparation of the machine Life Cycle. Journal of Physics: Conference Series, 1426, 012034. doi: http://doi.org/10.1088/1742-6596/1426/1/012034
- Beziazychnii, V. F., Kiselev, E. V. (2016). Raschet rezhimov rezaniia, obespechivaiuschikh kompleks trebuemykh parametrov tochnosti obrabotki i kachestva poverkhnostnogo shara. Metalloobrabotka, 6 (96), 9–17.
- Bratukhin, A. G., Dmitriev, V. G. (2007). CALS – strategiia naukoemkogo mashinostroeniia. Naukoemkie tekhnologii, 3, 10–25.
- Dorosinskii, L. G., Zvereva, O. M. (2016). Informatsionnye tekhnologii podderzhki zhiznennogo tsikla izdeliia. Ulianovsk: Zebra, 243.
- Yurchyshyn, I. I., Lytvyniak, Ya. M., Hrytsai, I. Ye. et. al.; Yurchyshyn, I. I. (Ed.) (2009). Tekhnolohiia mashynobuduvannia: Posibnyk-dovidnyk dlia vykonannia kvalifikatsiinykh robit. Lviv: Vydavnytstvo Natsionalnoho universytetu «Lvivska politekhnika», 528.
- Stupnytskyy, V., Hrytsay, I. (2020). Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of mechanical engineering, 67 (2), 1–19. doi: http://doi.org/10.24425/ame.2020.131688
- Pekelis, G. D., Gelberg, B. T. (1984). Tekhnologiia remonta metallorezhuschikh stankov. Moscow: Mashinostroenie, Leningr. otd.-nie, 240.
- Sulima, A. M., Shulov, V. A., Iagodkin, Iu. D. (1988). Poverkhnostnii sloi i ekspluatatsionnye svoistva detalei mashin. Moscow: Mashinostroenie, 240.
- Demkin, N. B., Ryzhov, E. V. (1981). Kachestvo poverkhnosti i kontakt detalei mashin. Moscow: Mashinostroenie, 244.
- Iascheritsyn, P. I., Minakov, A. P. (1986). Uprochniaiuschaia obrabotka nezhestkikh detalei v mashinostroenii. Minsk: Nauka i tekhnika, 215.
- Shyrokov, V. V., Arendar, L. A., Kovalchyk, Yu. I., Vasyliv, Kh. B., Vasyliv, O. M. (2005). Kompiuternyi obrobitok profilohram fryktsiinykh poverkhon. Fizyko-khimichna mekhanika materialiv, 1, 93–96.
- Kusyi, Ya. M., Topilnytskyi, V. H., Vasyliv, Kh. B. (2011). Doslidzhennia mikroreliefu vibrozmitsnenykh vtulok burovykh pomp. Visnyk Nats. un-tu «Lvivska politekhnika». Optymizatsiia vyrobnychykh protsesiv i tekhnichnyi kontrol u mashynobuduvanni ta pryladobuduvanni, 713, 171–175.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ярослав Маркіянович Кусий, Андрій Михайлович Кук, Владимир Григорьевич Топільницький, Дарія Петрівна Ребот, Михайло Васильович Бойко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.