Influence of constructive and geometric parameters of the end cutters on the microprofile characteristics of casting surfaces

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.229180

Keywords:

mechanical surface treatment, surface quality parameters, surface microprofile, functionally oriented design, technological route

Abstract

The object of research is the technological route of machining of an aluminum alloy casting. The research carried out is based on the basic principles of functionally oriented design of technological processes in the manufacture of products. The main hypothesis of the study is the need for a systematic approach to study the effect of cutting modes of a certain method of machining on the provision of quality parameters in the technological system (machine device tool workpiece). In traditional automated systems for technological preparation of production, an object-oriented principle of designing technological processes is implemented, which provides for the step-by-step implementation of interrelated stages based on a prototyping algorithm without a functional analysis of the operational characteristics of the product. The processing of functional, mating surfaces, ensuring that the product performs its service purpose, must be implemented according to the principle of function-oriented design (FODT). A characteristic feature of FOT is the technological provision of effective operational characteristics of the product in compliance with the parameters of accuracy and quality of the surface layer of the product intended by the designer. The paper deals with the influence of the structural and geometric parameters of end mills manufactured by Sandvick (Sandviken, Sweden) on the formation of microrelief parameters of an aluminum alloy casting profile during machining on a numerically controlled vertical milling center (CNC) HAAS MINIMILL (USA). An atypical option for the FOT principle of the technological route of machining the surfaces of workpieces of machine-building products has been applied. Its feature is ignoring the requirements of the manufacturer of metal-cutting tools, which is an important element of the technological system (machine tool device workpiece), regarding its use for a particular machine tool at a certain technological transition of machining. The performance criteria were the height and step characteristics of the microrelief of the profile of the surface layer of the workpiece being processed. The operating conditions of machine-building products have been determined, which make it possible to establish, in case of deviation from the manufacturer's recommendations at the stage of technological preparation of production, the rational elements of a certain technological system: a metal-cutting machine a device a metal-cutting tool a workpiece and processing modes to ensure the necessary operational characteristics.

Author Biographies

Yaroslav Kusyi, Lviv Polytechnic National University

PhD, Associate Professor

Department of Robotics and Integrated Mechanical Engineering Technologies

Andrij Kuk, Lviv Polytechnic National University

PhD, Associate Professor

Department of Robotics and Integrated Mechanical Engineering Technologies

Volodymyr Topilnytskyy, Lviv Polytechnic National University

PhD, Associate Professor

Department of Designing and Operation of Machines

Dariya Rebot, Lviv Polytechnic National University

PhD, Assistant

Department of Designing and Operation of Machines

Mykhailo Bojko, Lviv Polytechnic National University

Senior Lecturer

Department of Designing and Operation of Machines

References

  1. Kusyi, Ya., Stupnytskyy, V. (2020). Optimization of the Technological Process Based on Analysis of Technological Damageability of Casting. Advances in Design, Simulation and Manufacturing III. The Innovation Exchange, DSMIE-2020. Vol. 1: Manufacturing and Materials Engineering. Kharkiv, 276–284. doi: http://doi.org/10.1007/978-3-030-50794-7_27
  2. Gubaydulina, R. H., Gruby, S. V., Davlatov, G. D. (2016). Analysis of the Lifecycle of Mechanical Engineering Products. IOP Conference Series: Materials Science and Engineering, 142, 012060. doi: http://doi.org/10.1088/1757-899x/142/1/012060
  3. Aftanaziv, I. S., Shevchuk, L. I., Strohan, O. I., Kuk, A. M., Samsin, I. L. (2019). Improving reliability of drill pipe by strengthening of thread connections of its elements. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 22–29. doi: http://doi.org/10.29202/nvngu/2019-4/8
  4. Pronikov, A. S. (2002). Parametricheskaia nadezhnost mashin. Moscow: Izd-vo MGTU im. N. E. Baumana, 560.
  5. Suslov, A. G., Dalskii, A. M. (2002). Nauchnye osnovy tekhnologii mashinostroeniia. Moscow: Mashinostroenie, 684.
  6. Suslov, A. G. (2000). Kachestvo poverkhnostnogo sloia detalei mashin. Moscow: Mashinostroenie, 320.
  7. Kheifetz, M. L., Vasilyev, A. S., Klimenko, S. A. (2019). Technological Control of the Heredity of Operational Quality Parameters for Machine Parts. Advanced Materials & Technologies, 2 (14), 8–18. doi: http://doi.org/10.17277/amt.2019.02.pp.008-018
  8. Stupnytskyy, V. (2013). Features of Functionally-Oriented Engineering Technologies in Concurrent Environment. International Journal of Engineering Research & Technology, 2 (9), 1181–1186.
  9. Lachmayer, R., Mozgova, I., Reimche, W., Colditz, F., Mroz, G., Gottwald, P. (2014). Technical Inheritance: A Concept to Adapt the Evolution of Nature to Product Engineering. Procedia Technology, 15, 178–187. doi: http://doi.org/10.1016/j.protcy.2014.09.070
  10. Kusyi, Y. M., Kuk, A. M. (2020). Investigation of the technological damageability of castings at the stage of design and technological preparation of the machine Life Cycle. Journal of Physics: Conference Series, 1426, 012034. doi: http://doi.org/10.1088/1742-6596/1426/1/012034
  11. Beziazychnii, V. F., Kiselev, E. V. (2016). Raschet rezhimov rezaniia, obespechivaiuschikh kompleks trebuemykh parametrov tochnosti obrabotki i kachestva poverkhnostnogo shara. Metalloobrabotka, 6 (96), 9–17.
  12. Bratukhin, A. G., Dmitriev, V. G. (2007). CALS – strategiia naukoemkogo mashinostroeniia. Naukoemkie tekhnologii, 3, 10–25.
  13. Dorosinskii, L. G., Zvereva, O. M. (2016). Informatsionnye tekhnologii podderzhki zhiznennogo tsikla izdeliia. Ulianovsk: Zebra, 243.
  14. Yurchyshyn, I. I., Lytvyniak, Ya. M., Hrytsai, I. Ye. et. al.; Yurchyshyn, I. I. (Ed.) (2009). Tekhnolohiia mashynobuduvannia: Posibnyk-dovidnyk dlia vykonannia kvalifikatsiinykh robit. Lviv: Vydavnytstvo Natsionalnoho universytetu «Lvivska politekhnika», 528.
  15. Stupnytskyy, V., Hrytsay, I. (2020). Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of mechanical engineering, 67 (2), 1–19. doi: http://doi.org/10.24425/ame.2020.131688
  16. Pekelis, G. D., Gelberg, B. T. (1984). Tekhnologiia remonta metallorezhuschikh stankov. Moscow: Mashinostroenie, Leningr. otd.-nie, 240.
  17. Sulima, A. M., Shulov, V. A., Iagodkin, Iu. D. (1988). Poverkhnostnii sloi i ekspluatatsionnye svoistva detalei mashin. Moscow: Mashinostroenie, 240.
  18. Demkin, N. B., Ryzhov, E. V. (1981). Kachestvo poverkhnosti i kontakt detalei mashin. Moscow: Mashinostroenie, 244.
  19. Iascheritsyn, P. I., Minakov, A. P. (1986). Uprochniaiuschaia obrabotka nezhestkikh detalei v mashinostroenii. Minsk: Nauka i tekhnika, 215.
  20. Shyrokov, V. V., Arendar, L. A., Kovalchyk, Yu. I., Vasyliv, Kh. B., Vasyliv, O. M. (2005). Kompiuternyi obrobitok profilohram fryktsiinykh poverkhon. Fizyko-khimichna mekhanika materialiv, 1, 93–96.
  21. Kusyi, Ya. M., Topilnytskyi, V. H., Vasyliv, Kh. B. (2011). Doslidzhennia mikroreliefu vibrozmitsnenykh vtulok burovykh pomp. Visnyk Nats. un-tu «Lvivska politekhnika». Optymizatsiia vyrobnychykh protsesiv i tekhnichnyi kontrol u mashynobuduvanni ta pryladobuduvanni, 713, 171–175.

Downloads

Published

2021-04-30

How to Cite

Kusyi, Y., Kuk, A., Topilnytskyy, V., Rebot, D., & Bojko, M. (2021). Influence of constructive and geometric parameters of the end cutters on the microprofile characteristics of casting surfaces. Technology Audit and Production Reserves, 2(1(58), 6–10. https://doi.org/10.15587/2706-5448.2021.229180

Issue

Section

Mechanical Engineering Technology: Reports on Research Projects