Intellectual data analyzing in automated management system of bragorectification settin
DOI:
https://doi.org/10.15587/2312-8372.2014.23452Keywords:
bragorektification setting, data mining, neuro-uncertain technology, automatic analysisAbstract
This article tells about Data Mining technology using for analyzing data and extract information from data set on the example of bragorectification setting. The main task of exploration is the automatic analysis of methods and systems, data connections developping between amounts which can be seen as a kind of summary of the input data and may be used in further analysis, modeling or forecasting. This article considers the main influencing factors of technological processes and interconnection between input and output data based on Bragorectification setting operation (BRS). One of such methods is neuro – uncertain technology. To achieve the aim we have got information and statictics about management object operation and controlling. It was built parametric structure of Bragorectification setting neuro – uncertain model. It was formulated uncertain structure data base model and received the surface response as graphical dependencies for operator decisions. Using these methods of information processing in sub- decisions, the effectiveness of Bragorectification setting control will significantly increase.References
- Стабников, В. Н. Ректификация в пищевой промышленности. Теория процесса, машины, интенсификация [Текст]/ В. Н. Стабников, А. П. Николаев, М. Л. Мандельштейн. – М.: Легкая и пищевая промышленность, 1982. – 232 с.
- Мандельштейн, М. Л. Автоматические системы управления технологическим процессом брагоректификации [Текст]/ М. Л. Мандельштейн. – М.: Пищевая промышленность, 1975. – 240 с.
- Мандельштейн, М. Л. Математическая модель и статические характеристики ректификационной колонны [Текст]/ М. Л. Мандельштейн. – Ферментная и спиртовая промышленность. – 1969. – №1. – С. 11-16.
- Петренко, А. І. GRID та інтелектуальна обробка даних DATA MINING [Текст]/ А. І. Петренко// System Research & Information Technologies. – 2008. – № 4. – P. 97-110.
- Romero, C. Data mining in course management systems: Moodle case study and tutorial [Text]/ C. Romero, S. Ventura, E. García// Computers & Education. – 2008. – Vol. 57(1). – P. 368-384.
- Зігунов, О. М. Нейромережеві моделі виявлення і розпізнавання технологічних ситуацій [Текст]/ О. М. Зігунов, В. Д. Кишенько, Ю. Б. Бєляєв// Науково-технічна інформація. – 2013. – №1(55). – С. 72-78.
- Chrysostomou, K. Investigation of Users` Preferences in Interactive Multimedia Learning Systems: A Data Mining Approach [Text]/ K. Chrysostomou, S. Y. Chen, X. Liu// Interactive Learning Environments. – 2009. – Vol. 17(2). – Р. 151-163.
- Larsen, K. R. Analyzing unstructured text data: Using latent categorization to identify intellectual communities in information systems [Text]/ Kai R. Larsen, David E. Monarchi, Dirk S. Hovorka, Christopher N. Bailey// Decision Support Systems. – 2008. – Vol. 45, Issue 4. – P. 884-896.
- Ротштейн, А. П. Интеллектуальные технологии идентификации: нечеткая логика, генетические алгоритмы, нейронные сети [Текст]/ А. П. Ротштейн. – Винница: Универсум-Винница, 1999. – 320 с.
- Jang, J.-S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference System [Text]/ J.-S. R. Jang// IEEE Trans. Systems & Cybernetics. – 1993. – Vol. 23. – P. 665-685.
- Stabnikov, V. N., Nikolaev, A. P., Mandel'shtein, M. L. (1982). Rektifikatsiia v pishchevoi promyshlennosti. Teoriia protsessa, mashiny, intensifikatsiia. M.: Lehkaia i pishchevaia promyshlennost', 232.
- Mandel'shtein, M. L. (1975). Avtomaticheskie sistemy upravleniia tekhnolohicheskim protsessom brahorektifikatsii. M.: Pishchevaia promyshlennost', 240.
- Mandelshtejn, M. L. (1969). Matematicheskaya model i staticheskie xarakteristiki rektifikacionnoj kolonny. Fermentnaya i spirtovaya promyshlennost, 1, 11-16.
- Petrenko, A. I. (2008). GRID ta іntelektualna obrobka danix data mining. System research & information technologies, 4, 97-110.
- Romero, C., Ventura, S., García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 57(1), 368-384.
- Zіgunov, O. M., Kishenko, V. D., Belyaev, Yu. B. (2013). Nejromerezhevі modelі viyavlennya і rozpіznavannya tekhnologіchnikh situacіj. Naukovo-tekhnіchna іnformacіya, 1(55), 72-78.
- Chrysostomou, K., Chen, S. Y., & Liu, X. (2009). Investigation of Users` Preferences in Interactive Multimedia Learning Systems: A Data Mining Approach. Interactive Learning Environments, 17(2), 151-163.
- Larsen, K. R., Monarchi, D. E., Hovorka, D. S., Bailey, Ch. N. (2008). Analyzing unstructured text data: Using latent categorization to identify intellectual communities in information systems. Decision Support Systems, 45(4), 884-896.
- Rotshtejn, A. P. (1999). Intellektualnye texnologii identifikacii: nechetkaya logika, geneticheskie algoritmy, nejronnye seti. Vinnica.: Universum-Vinnica, 320.
- Jang, J.-S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Systems & Cybernetics, 23, 665-685.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Дмитро Олексійович Стеценко, Олександр Михайлович Зігунов, Ярослав Володимирович Смітюх
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.