Evaluation of efficiency and environmental safety of leaching metals from ore: ways of development and prospects

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.235288

Keywords:

ore deposits, underground mining, block leaching, mine workings, environmental safety

Abstract

The object of research is traditional mining technologies and technical means in combination with underground block leaching (UBL) of metals from rock ores with their preliminary crushing with explosives in installations mounted in mine workings. One of the most problematic areas is the difficulty of achieving a given crushing quality, as well as the required height of ore storage in the chamber for the subsequent leaching of metals and a loosening factor, taking into account the control of the energy of explosive destruction of rock ores.

The study used:

– data from literary sources and patent documentation in the field of technologies and technical means for UBL of metals from ores in energy disturbed massifs, substantiation of technological parameters of operational blocks;

– laboratory and production experiments;

– physical modeling of metal extraction from ores from the average linear size of a piece of blasted ore.

Analytical studies, comparative analysis of theoretical and practical results using standard and new methods were carried out with the participation of the authors. It was found that the most intensive infiltration leaching occurs when the size class of ore lumps is –100+0 mm. Metals are extracted from fractions –200+100 mm less intensively and for a longer time. To neutralize and flush the spent ore mass, it is recommended to treat it with lime solution and mine water through wells for supplying leaching solutions (irrigation system). The protection of the hydrogeological environment is carried out by silting the bottom of the chamber for collecting productive solutions with clay solution and by constant monitoring of mine water pollution in the zone of UBL influence. On the basis of the positive results obtained from the study and implementation of technologies for UBL of metals from rock ores during the development of block 5–86, in accordance with the recommendations issued, the same approach was used for blocks 5–84–86 and 5–88–90, as well as industrial experimental block 1–75–79. Due to the involvement in the production of substandard ores, the raw material base for the extraction of metals, at the operating mines, can be increased by 1.4–1.6 times.

The research results can be used in underground mining of ore deposits of complex structure in Ukraine, the Russian Federation, the Republic of Kazakhstan and other developed mining countries of the world.

Author Biographies

Vasil Lyashenko, State Enterprise «Ukrainian Research and Design Institute of Industrial Technology»

PhD, Senior Researcher, Head of Department

Research Department

Oleh Khomenko, Dnipro University of Technology

Doctor of Technical Sciences, Professor

Department of Mining Engineering and Education

 

Tatiana Chekushina, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences

PhD, Leading Researcher

Tamara Dudar, National Aviation University

Doctor of Technical Sciences, Senior Researcher, Associate Professor

Department of Environmental Science

Fedor Topolnij, State Higher Educational Institution «Central Ukrainian National Technical University»

Doctor of Biological Sciences, Professor

Department of General Agriculture

References

  1. Golik, V., Mitsik, M., Morkun, V., Morkun, N., Tron, V. (2019). Transportation of concentration and leaching tailings in underground mining of metal deposits. Mining of Mineral Deposits, 13 (2), 111–120. doi: http://doi.org/10.33271/mining13.02.111
  2. Aben, E., Markenbayev, Z., Khairullaev, N., Myrzakhmetov, S., Aben, K. (2019). Study of change in the leaching solution activity after treatment with a cavitator. Mining of Mineral Deposits, 13 (4), 114–120. doi: http://doi.org/10.33271/mining13.04.114
  3. Malanchuk, Z., Korniienko, V., Malanchuk, Y., Soroka, V., Vasylchuk, O. (2018). Modeling the formation of high metal concentration zones in man-made deposits. Mining of Mineral Deposits, 12 (2), 76–84. doi: http://doi.org/10.15407/mining12.02.076
  4. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S., Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12 (4), 56–62. doi: http://doi.org/10.15407/mining12.04.056
  5. Lyashenko, V., Khomenko, O., Chekushina, T., Topolnij, F., Dudar, T. (2020). Assessment of environmental and resource-saving technologies and technical means for processing and disposal of man-made formations and waste. Technology Audit and Production Reserves, 4 (3 (54)), 21–28. doi: http://doi.org/10.15587/2706-5448.2020.210666
  6. Lyashenko, V., Khomenko, O., Topolnij, F., Helevera, O. (2020). Substantiation of technologies and technical means for disposal of mining and metallurgical waste in mines. Technology Audit and Production Reserves, 3 (3 (53)), 4–11. doi: http://doi.org/10.15587/2706-5448.2020.200897
  7. Mosinets, V. N. (1976). Drobyaschee i seysmicheskoe deystvie vzryva v gornykh porodakh. Moscow: Nedra, 271.
  8. Mosinets, V. N., Abramov, A. V. (1982). Razrushenie treschinovatykh i narushennykh porod. Moscow: Nedra, 248.
  9. Mosinets, V. N., Lobanov, D. P., Tedeev, M. N., Abramov, A. V., Kapkanschikov, A. M., Arapov, G. P., Bubnov, V. K.; Mosinets, V. N. (Ed.) (1987). Stroitelstvo i ekspluatatsiya rudnikov podzemnogo vyschelachivaniya. Moscow: Nedra, 304.
  10. Chernov, A. P. (Ed.) (2001). Dobycha i pererabotka uranovykh rud v Ukraine. Kyiv: ADEF-Ukraina, 238.
  11. Sadovskiy, M. A. (1997). Geofizika i fizika vzryva. Moscow: Nedra, 334.
  12. Luzin, B. S. (2003). Metodika opredeleniya parametrov sorbtsionnogo peredela produktivnykh rastvorov vyschelachivaniya. Geologiya i okhrana nedr, 3 (8), 59–60.
  13. DSTU 4704:2008. (2009). Provedennia promyslovykh vybukhiv. Normy seismichnoi bezpeky. Kyiv: Derzhstandart Ukrainy, 10.
  14. Arens, V. Zh., Babichev, N. I,, Bashkatov, A. D., Gridin, O. M., Khrulev, A. S., Khcheyan, G. Kh. (2011). Skvazhinnaya gidrodobycha poleznykh iskopaemykh. Moscow: «Gornaya kniga», 295.
  15. Kaplunov, D. R., Kalmykov, V. N., Rylnikova, M. V. (2003). Kombinirovannaya geotekhnologiya. Moscow: Ruda i Metally, 558.
  16. Volkov, Yu. V., Sokolov, I. V. (2011). Optimizatsiya podzemnoy geotekhnologii v strategii osvoeniya rudnykh mestorozhdeniy kombinirovannym sposobom. Gorniy zhurnal, 11, 41–44.
  17. Sokolov, I. V., Antipin, Yu. G. (2012). Sistematizatsiya i ekonomiko-matematicheskoe modelirovanie variantov vskrytiya podzemnykh zapasov pri kombinirovannoy razrabotke mestorozhdeniy. Gorniy zhurnal, 1, 67–71.
  18. Svyatetskiy, V. S., Litvinenko, V. G., Morozov, A. A. (2012). O vozmozhnosti i usloviyakh primeneniya blochnogo podzemnogo vyschelachivaniya uranovykh rud Streltsovskogo mestorozhdeniya. Gorniy zhurnal, 10, 90–95.
  19. Trubetskoy, K. N. (2014). Razvitie resursosberegayuschikh i resursovosproizvodyaschikh geotekhnologiy kompleksnogo osvoeniya mestorozhdeniy poleznykh iskopaemykh. Moscow: IPKON RAN, 196.
  20. Komaschenko, V. I. (2015).Environmental-economical expediency of utilizing mining-industrial wastes for their converting. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 4, 23–30.
  21. Golik, V. I., Razorenov, Yu. I., Stradanchenko, S. G., Khasheva, Z. M. (2015). Principles and economic efficiency of ore mining technology combination. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 326 (7), 6–14.
  22. Karamushka, V. P., Kamnev, E. N., Kuzin, R. Z. (2014). Rekultivatsiya obektov dobychi i pererabotki uranovykh rud. Moscow: Izdatelstvo «Gornaya kniga», 183.
  23. Lyashenko, V. I., Kisliy, P. A., Dyatchin, V. Z. (2015). Radiometricheskaya predkontsentratsiya uranovykh rud. Obogaschenie rud, 1, 3–9.
  24. Morozov, A. A., Yakovlev, M. V. (2016). Off-balance uranium ores formed at development of the streltsovsky ore field involvement in processing. Gornyy informatsionno-analiticheskiy byulleten, 12, 174–181.
  25. Golik, V. I., Razorenov, Yu. I., Lyashenko, V. I. (2017). Improvement of development mining schemes for underground leaching metals. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 3, 124–135.
  26. Rylnikova, M. V., Vladimirov, D. YA., Pytalev, I. A., Popova, T. M. (2017). Robotizirovannye geotekhnologii kak put povysheniya effektivnosti i ekologizatsii osvoeniya nedr. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 1, 92–101.
  27. Lyashenko, V. I., Golik, V. I. (2017). Scientific and engineering supervision of uranium production development. Achievements and challenges. Mining informational and analytical bulletin, 7, 137–152. doi: http://doi.org/10.25018/0236-1493-2017-7-0-137-152
  28. Gavrishev, S. E., Kornilov, S. N., Pytalev, I. A., Gaponova, I. V. (2017). Povyshenie ekonomicheskoy effektivnosti gornodobyvayuschikh predpriyatiy za schet vovlecheniya v ekspluatatsiyu tekhnogennykh georesursov. Gorniy zhurnal, 12, 46–51.
  29. Golik, V. I., Razorenov, Yu. I., Lyashenko, V. I. (2018).Conditions of leaching non-ferrous metals from non-commercial reserves. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 329 (6), 6–16.
  30. Lyashenko, V. I., Golik, V. I., Dyatchin, V. Z. (2020). Storage of tailings in the form of a hardened mass in underground mined-out spaces and tailings facilities. Obogashchenie Rud, 1, 41–47. doi: http://doi.org/10.17580/or.2020.01.08
  31. Kamnev, E. N., Karamushka, V. P., Seleznev, A. V., Morozov, V. N., Hiller, A. (2020). Ecology of uranium mine closure: problems and solutions (in terms of Russia, CIS countries and Germany). Mining Informational and Analytical Bulletin, 5, 26–39. doi: http://doi.org/10.25018/0236-1493-2020-5-0-26-39
  32. Golik, V. (2020). Metal leaching technologies – the way of reanimation of mining Ossetia. Sustainable Development of Mountain Territories, 12 (2), 273–282. doi: http://doi.org/10.21177/1998-4502-2020-12-2-273-282
  33. Kovalchuk, I., Tobilko, V., Kholodko, Y., Zahorodniuk, N., Kornilovych, B. (2020). Purification of mineralized waters from U(VI) compounds using bentonite/iron oxide composites. Technology Audit and Production Reserves, 3 (3 (53)), 12–18. doi: http://doi.org/10.15587/2706-5448.2020.205146
  34. Golik, V., Dmitrak, Y., Gabaraev, O., Zasseev, I. (2021). Prospects for the deposits development in Ossetia. Sustainable Development of Mountain Territories, 13 (1), 103–111. doi: http://doi.org/10.21177/1998-4502-2021-13-1-103-111
  35. Liashenko, V. Y., Khomenko, O. E., Andreev, B. N., Holyk, V. Y. (2021). Justification of drill and blast pattern designs for ore treatment before in-situ leaching. Gorniy informatsionno-analiticheskiy byulleten, 3, 58–71.
  36. Ovseychuk, V. A., Zozulia, A. M. (2021). Improvement of in-situ leaching: a case-study of the streltsovo ore field. Mining informational and analytical bulletin, 3-1, 26–33.
  37. Rybnikova, L. S., Rybnikov, P. A. (2019). Regularities of groundwater quality formation at the abandoned copper mines of Levikha ore field (Middle Urals, Russia). Geokhimiya, 64 (3), 282–299. doi: http://doi.org/10.31857/s0016-7525643282-299
  38. Kornilovych, B., Wireman, M., Ubaldini, S., Guglietta, D., Koshik, Y., Caruso, B., Kovalchuk, I. (2018). Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies. Metals, 8 (6), 408. doi: http://doi.org/10.3390/met8060408
  39. Kovalchuk, I. A., Pylypenko, I. V., Kornilovych, B. Yu., Bashchak, O. Ye. (2019). Sorbtsiine ochyshchennia mineralizovanykh pidzemnykh vod vid spoluk uranu z vykorystanniam pilarovanykh hlyn. Dopovidi Natsionalnoi akademii nauk Ukrainy, 10, 80–88.
  40. Antoninova, N. Y., Sobenin, A. V., Shubina, L. A. (2020). Assessment of usability of industrial waste in construction of geochemical barriers. Mining Informational and Analytical Bulletin, 12, 78–88. doi: http://doi.org/10.25018/0236-1493-2020-12-0-78-88

Downloads

Published

2021-06-30

How to Cite

Lyashenko, V., Khomenko, O., Chekushina, T., Dudar, T., & Topolnij, F. (2021). Evaluation of efficiency and environmental safety of leaching metals from ore: ways of development and prospects. Technology Audit and Production Reserves, 3(3(59), 19–26. https://doi.org/10.15587/2706-5448.2021.235288

Issue

Section

Ecology and Environmental Technology: Original Research