Investigation of the accuracy of the manipulator of the robotic complex constructed on the basis of cycloidal transmission

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.237326

Keywords:

manipulators with high-precision hinges, rotary unit, stress-strain state of cycloidal transmission, high-precision hinge

Abstract

The object of research is modern robotic systems used in hotspots. In their arsenal, such mobile works are equipped with manipulators with high-precision hinges, which provide accurate positioning of the gripper (object of manipulation). Considering ground-based robotic complexes with a wheel or caterpillar base, the implementation of the process of manipulation on a stationary basis, a number of problem areas were identified that affect the accuracy of positioning.

In the course of research and analysis of modern robotic complexes, their circuit and design of components and mechanisms that provide the necessary qualities and parameters. The problem of developing high-precision hinges is central to the creation of efficient ground-based robotic systems.

The methodology of kinematic research of rotary hinges of the manipulator for the ground robotic complex is stated. The analysis of influence of deformations of material of impellers of not involute transfer on accuracy of positioning of a final subject is carried out. A kinetostatic analysis of the manipulator circuit was performed and the maximum moments acting in the hinged units on the drive unit were determined, which allowed to make a quantitative assessment using the Solidworks software package.

The mathematical model of construction of transfer and definition of accuracy of a rotary knot for a ground robotic complex, with use of cycloidal transfer without intermediate rolling bodies is investigated and developed. Mathematical modeling and taking into account the features of mechanical processes occurring in the manipulator, allows to increase the technical level of robotic complexes.

Ways of improvement are defined for maintenance of a progressive design of the manipulator that not only will satisfy necessary technical characteristics, but also will allow to simplify manufacturing technology.

Modern technologies and materials (stereolithography, carbon fiber, superhard materials) make it possible to implement advanced designs of spatial drive systems. Therefore, work in this direction is relevant, as robotic mechanical complexes for special purposes are widely used when performing work in emergencies.

Author Biographies

Serhii Strutynskyi, National Technical University «Igor Sikorsky Kyiv Polytechnic Institute»

PhD, Associate Professor

Department of Applied Hydroaeromechanics and Mechatronics

Roman Semenchuk, National Technical University «Igor Sikorsky Kyiv Polytechnic Institute»

Postgraduate Student

Department of Applied Hydroaeromechanics and Mechatronics

References

  1. De Waard, M., Inja, M., Visser, A. (2013). Analysis of flat terrain for the atlas robot. 2013 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium. doi: http://doi.org/10.1109/rios.2013.6595324
  2. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37 (3), 362–386. doi: http://doi.org/10.1002/rob.21918
  3. Kim, S., Wensing, P. M. (2017). Design of Dynamic Legged Robots. Foundations and Trends in Robotics, 5 (2), 117–190. doi: http://doi.org/10.1561/2300000044
  4. Dholakiya, D., Bhattacharya, S., Gunalan, A., Singla, A., Bhatnagar, S., Amrutur, B. et. al. (2019). Design, Development and Experimental Realization of A Quadrupedal Research Platform: Stoch. 2019 5th International Conference on Control, Automation and Robotics (ICCAR). doi: http://doi.org/10.1109/iccar.2019.8813480
  5. Gamazo-Real, J. C., Vázquez-Sánchez, E., Gómez-Gil, J. (2010). Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends. Sensors, 10 (7), 6901–6947. doi: http://doi.org/10.3390/s100706901
  6. Strutynskyi, S. V. Semenchuk, R. V. (2020). Rozroblennia konstruktsii vysokotochnoho povorotnoho vuzla dlia manipuliatora nazemnoho robotyzovanoho kompleksu. XXV Mizhnarodna naukovo-tekhnichna konferentsiia hidroaeromekhanika v inzhenernii praktytsi. Kyiv, 340–342.
  7. Strutynskyi, S., Kravchu, V., Semenchuk, R. (2018). Mathematical Modelling of a Specialized Vehicle Caterpillar Mover Dynamic Processes Under Condition of the Distributing the Parameters of the Caterpillar. International Journal of Engineering & Technology, 7 (4.3), 40–46. doi: http://doi.org/10.14419/ijet.v7i4.3.19549
  8. Henson, P., Marais, S. (2012). The utilization of duplex worm gears in robot manipulator arms: A design, build and test approach. 2012 5th Robotics and Mechatronics Conference of South Africa. doi: http://doi.org/10.1109/robomech.2012.6558461
  9. Rosenbauer, T. (1995). Getriebe für Industrieroboter: Beurteilungskriterien. Kenndaten, Einsatzhinweise: Shaker. Available at: http://publications.rwth-aachen.de/record/57404?ln=de
  10. Vysokotochnye reduktory SPINEA. Available at: http://reduser-s.systems/upload/TS_ВВЕДЕНИЕ_150.pdf
  11. López-García, P., Crispel, S., Verstraten, T., Saerens, E., Convens, B., Vanderborght, B., Lefeber, D. (2018). Failure mode and effect analysis (FMEA)-driven design of a planetary gearbox for active wearable robotics. International Symposium on Wearable Robotics. Pisa, 460–464. doi: http://doi.org/10.1007/978-3-030-01887-0_89
  12. Wolfrom, U. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik, 6, 615–617.
  13. Looman, J. (1996). Zahnradgetriebe (Gear Mechanisms). Berlin: Springer-Verlag. doi: http://doi.org/10.1007/978-3-540-89460-5
  14. García, P. L., Crispel, S., Saerens, E., Verstraten, T., Lefeber, D. (2020). Compact Gearboxes for Modern Robotics: A Review. Frontiers in Robotics and AI, 7. doi: http://doi.org/10.3389/frobt.2020.00103
  15. GENESIS Robotics (2020). LiveDrive® Radial MOTOR. Available at: https://genesisrobotics.com/products/livedrive-radial-motor/
  16. Strutynskyi, S., Semenchuk, R. (2020). Mathematical modeling of dynamic processes of the terrestrial robotic complex manipulator. UNITECH 2020. Gabrovo, II, 97–102.
  17. Strutynskyi, S. V., Semenchuk R. V. (2020). Rozroblennia matematychnoi modeli manipuliatora nazemnoho robotyzovanoho kompleksu. Promyslova hidravlika i pnevmatyka. Kyiv, 80–81. Available at: https://er.nau.edu.ua/bitstream/NAU/47785/5/Cavitation%20characteristics%20of%20axial-piston%20pumps%20with%20similar%20pumping%20units_01.pdf
  18. Zhu, J., Tian, F. (2018). Kinematics Analysis and Workspace Calculation of a 3-DOF Manipulator. IOP Conference Series: Earth and Environmental Science, 170, 042166. doi: http://doi.org/10.1088/1755-1315/170/4/042166
  19. Pysarenko, H. S., Kvitka, O. A., Umanskyi, Ye. S. (2004). Opir materialiv. Kyiv: Vyshcha shkola, 655.
  20. DSTU HOST 520:2014 «Pidshypnyky kochennia. Zahalni tekhnichni umovy». Available at: http://docs.cntd.ru/document/1200086914
  21. «Katalog. Podshipniki kacheniya. SKF». PUB BU/P1 10000/3 RU (2017). Available at: https://www.skf.com/binaries/pub39/Images/0901d196806f74ee-Rolling-bearings---10000_3-RU_tcm_39-121486.pdf
  22. GOST 24810-2013 «Podshipniki kacheniya. Vnutrennie zazory». Available at: https://docs.cntd.ru/document/1200104620
  23. GOST 24810-2013 «Podshipniki kacheniya. Vnutrennie zazory». Available at: https://files.stroyinf.ru/Data/550/55084.pdf
  24. Egorov, I. M., Aleksanin, S. A., Fedosovskiy, M. E., Kryazheva, N. P. (2014). Modeling of manufacturing errors for pin-gear elements of planetary gearbox. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 6 (94), 171–176. Avaialable at: https://ntv.ifmo.ru/ru/article/11206/matematicheskoe_modelirovanie_pogreshnostey_izgotovleniya_elementov_cevochnoy_peredachi_planetarnogoreduktora.htm
  25. Bezlyuftoviy reduktor – lyuft i KPD (2020). Available at: https://www.drivemeh.ru/blog/bezlyuftovyj-reduktor-lyuft-i-kpd/
  26. Strutynskyi, S. V., Semenchuk, R. V. (2020). Doslidzhennia napruzheno-deformovanoho stanu tsykloidalnoi peredachi bez promizhnykh til kochennia. Mashynobuduvannia ochyma molodykh: prohresyvni idei – nauka – vyrobnytstvo. Sumy, 126–129. Available at: https://essuir.sumdu.edu.ua/bitstream-download/123456789/80866/3/Mashynobuduvannia_2020.pdf;jsessionid=AE6B104C896A2622E3956A12FFE8577E
  27. Petrova, R. V. (2015). Introduction to Static Analysis Using SolidWorks Simulation. CRC Press, 326. Available at: http://docshare01.docshare.tips/files/28262/282622482.pdf

Downloads

Published

2021-07-27

How to Cite

Strutynskyi, S., & Semenchuk, R. (2021). Investigation of the accuracy of the manipulator of the robotic complex constructed on the basis of cycloidal transmission. Technology Audit and Production Reserves, 4(1(60), 6–14. https://doi.org/10.15587/2706-5448.2021.237326

Issue

Section

Mechanical Engineering Technology: Original Research