Mathematical modeling of chemisorption process at chlororganic productions

Authors

  • Юрий Александрович Безносик National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave. Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7425-807X

DOI:

https://doi.org/10.15587/2312-8372.2014.25358

Keywords:

chemisorption, reactive absorption, absorption, chlorine, hydrogen chloride, immediate reaction

Abstract

The data on mathematical modeling of simultaneous chlorine and hydrogen chloride absorption by alkaline solutions are given in the paper. The purpose of the paper is to analyze the sanitary column operation and develop the mathematical model of exhaust gas purification from chlorine and hydrogen chloride. The exhaust gas neutralization process proceeds in countercurrent absorption columns, which are irrigated by the alkaline solution. Mathematical model of the process includes a system of differential equations of component-wise material balance. The material balance equation system describes the change in the component concentration according to the column height. The equation system is written taking into account the assumptions that the process is isothermal, proceeds in the full displacement in both phases; only hydrogen chloride and chlorine are absorbed from the gas flow and chemisorption reaction in the liquid phase runs immediately. The reaction surface in this case coincides with the interface, the reaction proceeds in the external diffusion region. The process rate is determined only by the diffusion rate of the components from the gas flow to the reaction surface. The actual kinetics is not taken into account. The equations of the mathematical model allow to calculate the concentration profiles of the components according to the column height. Using the mathematical model of chemisorption of two gases allows to make calculations of similar columns at the design stage and the stage of production process investigation.

Author Biography

Юрий Александрович Безносик, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave. Kyiv, Ukraine, 03056

Ph. D., Associate Professor

Department of Cybernetics of Chemical Technology Processes

References

  1. Шервуд, Т. Массопередача [Текст]/ Т. Шервуд, Р. Пигфорд, Ч. Уилки; пер. с англ. Н. Н. Кулова. – М.: Химия, 1982. – 696 с.
  2. Данквертс, П. В. Газо-жидкостные реакции [Текст] / П. В. Данквертс; пер. с англ. И. А. Гильденблата. – М.: Химия, 1973. – 296 с.
  3. Астарита, Дж. Массопередача с химичекой реакцией [Текст]/ Дж. Астарита; пер. с англ. М. И. Балашова. – Л.: Химия, 1971. – 224 с.
  4. Аксельрод, Ю. В. Газожидкостные хемосорбционные процессы [Текст]/ Ю. В. Аксельрод. – М.: Химия, 1989. – 240 с.
  5. Рамм, В. М. Абсорбция газов [Текст]/ В. М. Рамм. – Изд. 2-е, переработ. и доп. – М.: Химия, 1976. – 656 с.
  6. Noeres, C. Modelling of reactive separation processes: reactive absorption and reactive distillation [Text]/ C. Noeres, E. Kenig, A. Gorak// Chemical Engineering and Processing. – 2003. – V. 42. – P. 157-178.
  7. Kenig, E. Rigorous dynamic modelling of complex reactive absorption processes [Text]/ E. Kenig, R. Schneider, A. Gorak. – Chem. Eng. Sci. – 1999. – V. 54. – P. 5195-5203.
  8. Kucka, L. Determination of gas-liquid reaction kinetics with a stirred cell reactor [Text]/ L. Kucka, J. Richter, E.Y. Kenig, A. Gorak// Separation and Purification Technology. – 2003. – V. 31. – P. 163-175.
  9. Kenig, E. Ya. Mass transfer-reaction coupling in two-phase multicomponent fluid systems [Text]/ E. Ya. Kenig// Chem. Eng. Journal. – 1995. – V. 57. – P. 189-204.
  10. Гармаш, Р. В. Очистка газових викидів від хлору і хлористого водню виробництва вінілхлориду [Текст]/ Р. В. Гармаш// Технологический аудит и резервы производства. – 2013. – T. 5, N 4(13). – С. 8-10.
  11. Bugaeva, L. N. An application of expert system to choice, simulation and development of gases purification processes [Text]/ L. N. Bugaeva, Yu. A. Beznosik, G. A. Statjukha, A. A. Kvitka// J. Computers Chem. Engng. – 1996. – Vol. 20, Suppl. – P. 401-402.
  12. Безносик, Ю. А. Абсорбция хлора и хлористого водорода из отходящих газов в производстве хлорметанов [Текст]/ Ю. А. Безносик, Т. В. Бойко// Химическое машиностроение. – 1981. – Вып. 34. – С. 77-82.
  13. Sherwood, T., Pigford, R., Wilke, C. (1975). Mass Transfer. M.: Chemistry, 696.
  14. Danckwerts, P. V. (1970). Gas-Liquid Reaction. M.: Chemistry, 296.
  15. Astarita, G. (1967). Mass transfer with chemical reaction. L.: Chemistry, 224.
  16. Akselrod, Y. (1989). Gas-liquid chemisorption processes. M.: Chemistry, 240.
  17. Ramm, V. (1976). The absorption of gases. M.: Chemistry, 656.
  18. Noeres, C., Kenig, E., Gorak, A. (2003). Modelling of reactive separation processes: reactive absorption and reactive distillation. Chemical Engineering and Processing, 42, 157-178.
  19. Kenig, E., Schneider, R., Gorak, A. (1999). Rigorous dynamic modelling of complex reactiive absorption processes. Chem. Eng. Sci., 54, 5195-5203.
  20. Kucka, L., Richter, J., Kenig, E. Y., Gorak, A. (2003). Determination of gas-liquid reaction kinetics with a stirred cell reactor. Separation and Purification Technology, 31, 163-175.
  21. Kenig, E. Ya. (1995). Mass transfer-reaction coupling in two-phase multicomponent fluid systems. Chem. Eng. Journal, 57, 189-204.
  22. Garmash, R. (2013). Chlorine and hydrogen chloride gas emissions cleaning in vinylchloride production. Technology Audit And Production Reserves, 5(4(13)), 8-10.
  23. Bugaeva, L. N., Beznosik, Yu. A., Statjukha, G. A., Kvitka, A. A. (1996). An application of expert system to choice, simulation and development of gases purification processes. J. Computers Chem. Engng, 20, Suppl., 401-402.
  24. Beznosyk, Yu., Boyko, T.V. (1981). Absorption of chlorine and hydrogen chloride from the flue gases in the production of chloromethanes. Chemical engineering, 34, 77-82.

Published

2014-06-25

How to Cite

Безносик, Ю. А. (2014). Mathematical modeling of chemisorption process at chlororganic productions. Technology Audit and Production Reserves, 3(5(17), 28–30. https://doi.org/10.15587/2312-8372.2014.25358