Calculation of stable operation of vortex spray countercurrent mass exchange device (VSCMED) depending on hydrodynamic characteristics of gas-drop flow

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.26316

Keywords:

mass exchange, rate, instrument, vortex, drop, device, calculation

Abstract

The paper gives the method of selecting stable operation modes of the vortex spray countercurrent mass exchange device (VSCMED), which includes calculating the flow of drops taking into account flow uniformity and mutual influence. In order to make the calculation, a number of assumptions, which allow to calculate the device for specific conditions, was introduced. When developing techniques, the impact of forces on the motion of the drop was taken into account. As a result of theoretical and practical studies, the flow rate of gas and droplets, the ratio of centrifugal forces and the forces of aerodynamic drag were determined, thus having ensured the optimum mode of stable operation of VSCMED. The results obtained allow to design new models of VSCMED-type devices when developing new productions for the chemical and petrochemical industries. 

Author Biographies

Jalal Mohammed Abdullah, Sumy State University, 2, Rymskogo-Korsakova st., 40007, Sumy

Graduate student

Department processes and devices of chemical and refining industries 

Nadim Qasim Mohammed Al Hayat, Sumy State University, 2, Rymskogo-Korsakova st., 40007, Sumy

Graduate student

Department processes and devices of chemical and refining industries 

References

  1. Sklabinskyi, V. I., Osipov, V. A., Kononenko, M. P., Mokhammed Abdullakh, D. M. (2011). Rukh potoku plavu (hazu) v porozhnyni vibrohranuliatora ta vykhrovoho protytechiinoho masoobminnoho aparata. Khimichna promyslovist Ukrainy, № 1, 3-5.
  2. Sklabinskyy, V. I., Abdullah, J. M., Mohammed Gasim, N. (2011). The Characteristics of Vortex Spray Countercurrent Mass Exchange Device. Engineering & Technology Journal, №15, Vol. 29, 3211-3223.
  3. Mohammed Abdullah, J.M., Sklabinskyy, V. I., Mohammed, A. H. (2011). The assessment of the processing chamber radial dimensions of vortex spray countercurrent mass exchange device. First Scientific Conference on Modern Technologies in Oil & Gas Refining, Baghdad, 24.
  4. Gustafson, E. K., Sethian, J. A. (1991). Vortex methods and vortex motion. SIAM, 212. Available: http://dx.doi.org/10.1137/1.9781611971736.
  5. Holdshtyk, M. A., Yavorskyi, N. Y. (2005). Protsessy perenosa v zernystom sloe. Novosybyrsk: Yn-t teplofyzyky ym. S. S. Kutateladze SO RAN, 358.
  6. Alekseenko, S. V., Kuibyn, P. A., Okulov, V. L. (2003). Vvedenye v teoryiu kontsentryrovannykh vykhrei. Novosybyrsk: Yn-t teplofyzyky SO RAN, 503.
  7. Kuzmin, A., Pravdina, M., Yavorsky, A., Yavorsky, N., Parmon, V. (2005, March 15). Vortex centrifugal bubbling reactor. Chemical Engineering Journal, Vol. 107, № 1-3, 55–62. doi:10.1016/j.cej.2004.12.010.
  8. Borysov, Y. Y., Khalatov, A. A., Shevtsov, S. V. (2005). Kontaktnyi teplomassoobmen pry okhlazhdenyy vlazhnoho vozdukha v vykhrevom barbotazhnom sloe. Promyshlennaia teplotekhnyka, T. 27, №1, 13-17.
  9. Mokhammed, A. D., Al Khaiiat Mokhamed, N. K. (2012). Opredelenye optymalnoho razmera kapel v VRPMA. Mezhdunarodnaia nauchno-tekhnycheskaia konferentsyia "Tekhnolohyia – 2012", 6-7 aprelia 2012, 171-172.
  10. Shyliaev, M. Y., Tolstykh, A. V., Derenok, A. N., Khromova, E. M. (2004). Dvukhtemperaturnaia model teplomassoobmena pry formyrovanyy puzyrei na otverstyiakh hazoraspredelytelnykh reshetok barbotazhnykh apparatov. Teplofyzyka y aeromekhanyka, Tom 11, №1, 127-136.

Downloads

Published

2014-07-24

How to Cite

Abdullah, J. M., & Al Hayat, N. Q. M. (2014). Calculation of stable operation of vortex spray countercurrent mass exchange device (VSCMED) depending on hydrodynamic characteristics of gas-drop flow. Technology Audit and Production Reserves, 4(1(18), 53–56. https://doi.org/10.15587/2312-8372.2014.26316

Issue

Section

Technology audit