The intensification of mass transfer processes for the reactions in complex-reactive heterogeneous systems

Authors

  • Михайло Ілліч Васильєв National Technical University «Kharkiv Polytechnic Institute», Str. Frunze 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-4635-9257

DOI:

https://doi.org/10.15587/2312-8372.2015.38074

Keywords:

mass transfer processes, intensification, heterogeneous system, interfacial surface, phase inversion

Abstract

Based on the study of the theory of heat and mass transfer processes, known models of interfacial heat and mass transfer in the article concretized hydrodynamic side of transport processes. It allows reasonable approach to the methods of phase transfer intensification: mechanical, pulsating, thermal of formation and collapse of bubble, medium movement on the curved channels. It is shown that each method can be implemented in a corresponding design of the device. The basic constructions as devices and their contact devices are considered in detail, the advantages and disadvantages are shown. It is found that the development and investigation of these structures is a promising direction. For each construction it is analyzed and justified the influence of nonstationarity effects and persistence on the phase transfer also reviewed the related positive results. It is shown that research in this area will create intense mass transfer devices, which can be achieved by thermal mass transfer coefficients of growth exceeding the growth rate of the hydraulic resistance machines.

Author Biography

Михайло Ілліч Васильєв, National Technical University «Kharkiv Polytechnic Institute», Str. Frunze 21, Kharkov, Ukraine, 61002

Candidate of Technical Science, Associate Professor

Department of chemical engineering and industrial ecology

References

  1. Melihov, I. V., Kutepov, A. M. (2001). Nauka o kristallizatsii na poroge tretego tyisyacheletiya. Teoreticheskie osnovyi himicheskoy tehnologii, Vol. 35, № 5, 451-456.
  2. Dinsmore, A. D., Crocker, J. C., Yodh, A. G. (1998, February). Self-assembly of colloidal crystals. Current Opinion in Colloid & Interface Science, Vol. 3, № 1, 5–11. doi:10.1016/S1359-0294(98)80035-6
  3. Slinko, M. G. (2000). Nekotoryie tendentsii razvitiya teorii himicheskoy tehnologii. Himicheskaya promyishlennost, № 2 (69), 3-8.
  4. Pokusaev, B. G. (2007). Protsessyi perenosa v mnogofaznoy srede. Teoreticheskie osnovyi himicheskoy tehnologii, Vol. 41, 1, 35-43.
  5. Belyaev, E. K., Tomenko, V. M. (1978). Nekotoryie voprosyi karbonizatsii ammiachno–solyanogo rastvora. Voprosyi himii i himicheskoy tehnologii, Vol. 32, 83-90.
  6. Belyaev, E. K. (1980). Osnovnyie napravleniya intensifikatsii protsessa karbonizatsii v proizvodstve ochischennogo bikarbonata natriya. Tehnologiya sodyi i sodoproduktov, Vol. 52, 74-84.
  7. Shaporev, V. P., Titov, V. M., Lopuhina, O. A. et al. (1999). Puti intensifikatsii protsessov massoperenosa v barbotazhnyih kolonnah (BSK) protivotochnogo tipa s kontaktnyimi elementami perekrestnotochnogo tipa. Vestnik KhHPU, Vol. 33, 3-13.
  8. Shaporev, V. P., Titov, V. M., Ivanov, Yu. A. (1999). Vliyanie nachalnogo peresyischeniya na integralnyie harakteristiki dispersnoy fazyi, osazhdayuscheysya v karbonizatsionnoy kolonne sodovogo proizvodstva. Vestnik KhHPU, Vol. 28, 49-56.
  9. Shaporev, V. P., Lopuhina, O. A., Ivanov, Yu. A. (1998). Modelirovanie protsessa rosta kristallov iz rastvora kristallizanta, obrazuemyih vzaimodeystviem solevyih rastvorov s gazoobraznyim СО2. Vestnik KhHPU, Vol. 25, 97-103.
  10. Ivanov, Yu. A., Shaporev, V. P., Titov, S. V., Dolkart, A. F. (1998). Issledovanie kinetiki kristallizatsii tverdoy fazyi iz peresyischennogo rastvora. Himiya i tehnologiya proizvodstva osnovnoy himicheskoy promyishlennosti, Vol. 61, 82-84.
  11. Ivanov, Yu. A., Titov, V. M., Shaporev, V. P. (1999). K voprosu o vliyanii poverhnostno-aktivnyih veschestv (PAV) na absorbtsiyu uglekislotyi i protsess kristallizatsii NaHCО3 v karbonizatsionnoy kolonne (KL) sodovogo proizvodstva. Vestnik KhHPU, Vol. 66, 11-17.
  12. Lopuhina, O. A., Shaporev, V. P. (2002). Sravnitelnyiy analiz tipovyih promyishlennyih apparatov dlya protsessa saturatsii v sveklosaharnom proizvodstve. Integrirovannyie tehnologii i energosberezhenie, № 4, 30-43.
  13. Dalmatskaya, E. I. (1963). Kinetika i statika karbonizatsii rastvorov silikata natriya. Rabotyi po tehnologii proizvodstva napolnitelya i adsorbentov mineralnogo proishozhdeniya, Vol. XV, 83-96.
  14. Astarita, D. J. (1971). Massoperedacha s himicheskoy reaktsiey. L.: Himiya, 224.
  15. Kawase, Y., Moo – Young, M. (1990). Mathematical models for desing of bioreactors applications of Kolmogoroff’s theory of isotropic turbulence. Chemical Engineering Journal, № 5 (43), 19-41.
  16. Tkach, G. A., Shaporev, V. P., Maslov, D. V. (1996). Perspektivnyie puti intensifikatsii teploobmennyih protsessov. Ekologiya himicheskoy tehniki i biotehnologii, Vol. 1, 96-98.
  17. Shaporev, V. P., Tkach, G. A., Hitrova, I. V., Minek, S. A. (1989). Eksperimentalnoe issledovanie toroidalnogo reaktora s zakrutkoy potokov. Vestnik KhPI, Vol. 2, № 269, 37-41.

Published

2015-01-29

How to Cite

Васильєв, М. І. (2015). The intensification of mass transfer processes for the reactions in complex-reactive heterogeneous systems. Technology Audit and Production Reserves, 1(4(21), 31–36. https://doi.org/10.15587/2312-8372.2015.38074

Issue

Section

Technologies of food, light and chemical industry