The use of SDRAM for synchronized switching of television signals

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.47928

Keywords:

switching television signals, SDRAM-buffering, routing, multi-user mode, TCP, TCP-simulator, path

Abstract

The investigation of the possibility of using SDRAM-chip for synchronization of pre-unsynchronized television signals. Such type of memory can significantly reduce the cost of the synchronized switching television signals in the case of multi-user mode and a large number of sources (1000 and more) and build a switching system over a large area. Timing diagrams of the digital switching unit, which allows drawing conclusions about the possibility of using such devices for solving the problem of synchronization. This is important to optimize the cost of construction and redesign of the system when the location of the sources on a large territory may be situational and for a brief time to change. This approach also makes it possible to minimize the size of the switching system and fiber-optic camera channels, which do not depend on the number of service sources. According to the authors, such technical solution is proposed for the first time.

Author Biographies

Борис Евгеньевич Панченко, V. M. Glushkov Institute of Cybernetics of NAS of Ukraine, 40, Glushkov Ave, Kyiv, Ukraine, 01040

Doctor of Physical and Mathematical Sciences, Senior Researcher

Department of automation of programming

Дмитрий Андреевич Печенюк, Sumy State University, 2, Rymskogo-Korsakova st., Sumy, Ukraine, 40036

Postgraduate student

Department of Electronics and Computer Technology

References

  1. Dzhakoniya, V. E., Gogol', A. A., Druzin, Ja. V. (2007). Television. М.: Hot Line – Telecom, 616.
  2. Olifer, V. G., Olifer, N. A. (2001). Computer networks. Principles, technologies, protocols. Saint Petersburg: Piter, 672.
  3. Butenko, V. V. (2014). Digital television broadcasting. Anywhere and anytime. To all and anyone. M.: Scientific Research Institute of Radio (NIIR), 481.
  4. Glasman, K. (2006). Conference IBC2006. Journal “625”, 10, 66–71.
  5. Bau, N. D. Experience delivery networking: the network ahead. Global Telecoms Business. Available: http://www.globaltelecomsbusiness.com/article/2907010/Experience-delivery-networking-the-network-ahead.html
  6. Teterin, V. S. (1971). Peculiarities of television directing at the multi-camera shooting method. М.: VGIK, 105.
  7. Mamchev, G. V. (2007). Peculiarities of radio communication and television. University textbook. М.: Hot Line – Telecom, 416.
  8. Baron, S. N., Krivocheev, M. I. (1996). Digital image and audio communication. Toward a global information infrastructure. New York: Van Nostrand Reinhold, 288.
  9. Panchenko, B. E., Pechenyuk, D. A. (2013). Framework analysis of the methods video signal switching. Control systems and computers, 5, 53–64.
  10. Zubarev, Y. S., Krivosheev, M. I., Krasnoselsky, I. N. (2001). Digital television broadcasting. Foundations, methods, systems. Moscow: Scientific Research Institute of Radio (NIIR), 548.
  11. Sokolov, A. G. (2001). Montage: TV, movies, video. M.: Publishing House «625», 207.
  12. Rossmere, D. L., Glenn, R. S., Brown, W. B., Carluci, J. B., Duffy, R. W.; Sony Corporation, Sony Electronics, Inc. (2000, Jul. 18). Random access audio/video processor with compressed video resampling to allow higher bandwidth throughput. Pat. US-6092119, 07-2000. Available: http://www.google.com/patents/US6092119
  13. Ota, K., Yamauchi, T. (2003, Oct. 30). Synchronous signal superimposing apparatus and synchronous signal superimposing method, which use constant current source. Pat. US 2003/0202123 A1, 04-2003. Available: http://www.google.com.ar/patents/US20030202123
  14. Murakami, N.; Imagenics Co., Ltd. (2009, Apr. 30). Video switcher and video switching method. Pat. US 2009/0109334 A1. Available: http://www.google.com/patents/US20090109334
  15. Panchenko, B. E., Pechenjuk, D. A. (2013, Nov. 7). Method of automated digital multi-program multi-signal commutation. Pat. US 2013/0294457 A1, 11-2010. Available: http://www.google.com/patents/US20130294457
  16. Shimizu, H. Multiple channel image output device. Pat. JР 2007235454 А, 02-2006.
  17. Liang, N. (2008, Jan. 9). Video signal synthesis controller. Pat. CN 200620016569, 01-2008. Available: http://www.google.ee/patents/CN201004686Y?cl=en&hl=et
  18. Casper, D. A., Krim, M. J., Willis, J. D. (2010, Apr. 29). Dual use video mixer crosspoint matrix. Pat US-2010/0103320, 04-2010. Available: http://www.google.com.ar/patents/US20100103320
  19. Cummings, C. E. (2002). Simulation and Synthesis Techniques for Asynchronous FIFO Design. Synopsys Users Group Conference. San Jose, CA, 22.
  20. Arakelov, A. A., Sidorov, E. A., Bobkov, S. G. (2005). Architecture of a SRAM memory interface to provide the maximum switch device performance. Problems of Advanced Microelectronic Systems. M.: Institute for Design Problems in Microelectronics, RAS, 229–234.
  21. Sharma, A., Ali, C. Z. (2013). Construct High-Speed SDRAM Memory Controller Using Multiple FIFO's for AHBMemory SlaveInterface. International Journal of Emerging Technology and Advanced Engineering, Vol. 3, 3, 907–916.
  22. Panchenko, B. E., Pechenyuk, D. A. (2015). Method of automated digital multi-program selective routing of digital signals in relation to their switching. Appl. № а2015-02982. 10.

Published

2015-07-23

How to Cite

Панченко, Б. Е., & Печенюк, Д. А. (2015). The use of SDRAM for synchronized switching of television signals. Technology Audit and Production Reserves, 4(2(24), 63–68. https://doi.org/10.15587/2312-8372.2015.47928