Development of new welding consumables for wet underwater welding of high-alloy corrosion-resistant steel

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.51448

Keywords:

flux-cored wire, steel Ch18Ni10Ti, covered electrode, nuclear power plants, gas saturation, wet welding

Abstract

The paper describes the technology for mechanized wet underwater welding of high-alloy corrosion-resistant steel. The main purpose of the research is development of the pioneering self-shielding flux-cored wire for wet underwater welding. Quantity and quality characteristics were determined by using the mathematical experimental design method. Quantity and quality welding-technological characteristics, such as gas saturation of the weld metal, stability of the arc burning process in water environment, and optimal composition of slag-forming components of the flux-cored wire charge, were specified. Application of the experimental self-shielding wire for mechanized wet underwater welding of high-alloy corrosion-resistant steel will make it possible to increase productivity and improve quality of underwater welding-repair operations, and receive an economic effect due to reduction of downtime in production cycle of an object being repaired. Application of this technology will allow a partial or even complete absence of participation of humans in the welding process performed under extreme conditions in radioactive environment (in case of nuclear power plants) and in welding in deep waters. The research results can be used for welding-repair operations at nuclear power plants, ship-repair and ship-raising operations, and at hydraulic facilities. The proposed innovation technology makes it possible to fully replace the wet underwater covered-electrode welding technology. 

Author Biography

Микола Юрійович Каховський, Paton Electric Welding Institute of NAS of Ukraine, Bozhenko str, 11, Kyiv-150, 03680

Researcher

Department of metallurgy and technology of welding high-alloy steels and alloys

References

  1. Hancock, R. (2003). Underwater nuclear. Welding Journal, 9, 48–49.
  2. O`Sullivan, J. E. (1988). Wet underwater weld repair of Susquehanna unit 1 steam dryer. Welding journal, 6, 19–23.
  3. Rozert, R. (2014). Primenenie poroshkovyh provolok dlia svarki v promyshlennyh usloviiah. Avtomaticheskaia svarka, 6-7, 60–64.
  4. Makovetskaia, O. K. (2012). Situatsiia na rynke osnovnyh konstruktsionnyh materialov i svarochnoi tehniki v Iaponii. Svarshchik, 5, 34–41.
  5. Avilov, T. I. (1958). Issledovanie protsessa dugovoi svarki pod vodoi. Svarochnoe proizvodstvo, 5, 12–14.
  6. Madatov, N. M. (1967). Podvodnaia svarka i rezka metallov. Leningrad: Sudostroenie, 164.
  7. Kononenko, V. Ya. (2011). Podvodnaia svarka i rezka metallov. Kyiv: Unіversitet «Ukrayna», 264.
  8. Kahovskii, N. Yu., Maksimov, S. Yu. (2014). Vliianie sostava shihty poroshkovoi provoloki na stabil'nost' protsessa goreniia dugi pri mokroi podvodnoi svarke. Zbirnyk naukovykh prats Natsionalnoho universytetu korablebuduvannia, 6, 29–33.
  9. Balyts’kyi, O. I., Eliasz, J., Ripei, I. V. (2012, January). Influence of preliminary plastic deformation of 12Kh18N12T steel on its mechanical properties. Materials Science, Vol. 47, № 4, 438–446. doi:10.1007/s11003-012-9414-0
  10. Balitskii, A. I., Vitvitskii, V. I. (2009). Determination of stainless steels mechanical properties in high-pressure hydrogen. Effects of Hydrogen on Materials, 421–428.
  11. Kakhovskyi, M. Yu. (2014). Poroshkovyi samozakhysnyi drit dlia pidvodnoho zvariuvannia vysokolehovanoi koroziinostiikoi stali 12Kh18N10T. Molodyi vchenyi, 11, 12–15.

Published

2015-09-22

How to Cite

Каховський, М. Ю. (2015). Development of new welding consumables for wet underwater welding of high-alloy corrosion-resistant steel. Technology Audit and Production Reserves, 5(7(25), 33–35. https://doi.org/10.15587/2312-8372.2015.51448