Synthesis and investigation of magnetite dissolution kinetics in the model environments

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.51465

Keywords:

synthesis, kinetics, magnetite, solubility, concentration, environment

Abstract

The article describes the magnetite dissolution kinetics in the modeling environment depending on the time of dissolution and pH. The results of solubility by spectrophotometry, atomic absorption and gravimetric methods are given. It is revealed that the magnetite is better soluble in an acidic medium with a decrease in acidity and in alkaline environment magnetite is more soluble at higher pH. It is revealed that the magnetite solubility increases with increasing time of incubation. The order of reaction (I-st order) and rate constant of magnetite dissolution are determined. The optimum concentration of the starting materials and conditions of the magnetite synthesis are matched. It is found that the magnetite is able to dissolve in the model environments and can be used for delivery of the iron (II) into the body.

Author Biographies

Александр Валентинович Александров, Ukrainian Engineering-Pedagogics Academy, Universitetskaya st., 16, Kharkov, Ukraine, 61003

Candidate of Chemistry Sciences, Associate Professor, Head of the Department

Department of food and chemical technologies

Ирина Васильевна Цихановская, Ukrainian Engineering-Pedagogics Academy, Universitetskaya st., 16, Kharkov, Ukraine, 61003

Candidate of Chemistry Sciences, Associate Professor

Department of food and chemical technologies

Зоя Валериевна Барсова, Ukrainian Engineering-Pedagogics Academy, Universitetskaya st., 16, Kharkov, Ukraine, 61003

Candidate of Science (Engineering), Assistant Professor

Department of food and chemical technologies

References

  1. Brusentsov, N. A., Gogosov, V. V., Lukashevich, M. V. (1996). Fizicheskie i himicheskie kriterii ferromagnetikov dlia biomeditsinskih tselei. Himiko-farmatsevticheskii zhurnal, 10, 48–53.
  2. Vidal-Gadea, A. (2015). Animal magnetism: how the magnetic field influences animal navigation. eLife Sciences Publications, 1–2.
  3. Whiting, J. (2015). How do animals use their magnetic superpowers? Adaptations, Technology, 1–3.
  4. Kirshvink, D. D. (1989). Biogennyi magnetit i magnitoretseptsiia, Vol. 1. Moscow: Mir, 352.
  5. Joao, T., Blanca, L., Gözde, K., Natalia, F.-B., Carla, C., Solange, C. et al. (2015). Comet assay assessment of oleic acid-coated magnetite nanoparticles on human SHSY5Y neuronal cells. Frontiers in Genetics, Vol. 6. Available: http://doi.org/10.3389/conf.fgene.2015.01.00026
  6. Iliuha, N., Barsova, Z., Tsihanovskaia, I., Kovalenko, V. (2010). Tehnologiia proizvodstva i pokazateli kachestva pishchevoi dobavki na osnove magnetita. Eastern-European Journal Of Enterprise Technologies, 6(10(48)), 32–35. Available: http://journals.uran.ua/eejet/article/view/5847
  7. Belousov, A. N. (2003). Vliianie magnetita – preparata nanotehnologii na kletochnyi metabolіzm. Vіsnik problem bіologіі і meditsini, 7, 36–37.
  8. Levitin, Y., Koval, A., Vedernikova, I., Ol’khovik, L., Tkachenko, M. (2011). Physical and technological principles of creating biocompatible superparamagnetic particles. Acta Poloniae Pharmaceutica, Drug Research, Vol. 68, № 4, 549–553.
  9. Iliukha, M. H., Barsova, Z. V., Cychanovskaya, I. V., Tymofeieva, V. P., Vedernykova, I. O.; assignee: Ukrainian Engineering and Pedagogical Academy. (10.11.2010). Sposib otrymannia mahnetytu. Patent of Ukraine № 54284. Bull. № 21. Available: http://uapatents.com/3-54284-sposib-otrimannya-magnetitu.html
  10. Prais, V., Translated from English: L'vov, B. V. (1976). Analiticheskaia atomno-absorbtsionnaia spektroskopiia. Moscow: Mir, 360.

Published

2015-09-22

How to Cite

Александров, А. В., Цихановская, И. В., & Барсова, З. В. (2015). Synthesis and investigation of magnetite dissolution kinetics in the model environments. Technology Audit and Production Reserves, 5(7(25), 31–32. https://doi.org/10.15587/2312-8372.2015.51465