Development of anode mixture composition from processing products of coal to produce carbon nanostructures by the plasma-arc method

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.55483

Keywords:

pitch coke, medium temperature pitch, coal tar, carbon nanoparticles, plasma-arc method

Abstract

It is discussed the use of coal processing products as a part of the anode mixture and their effect on the production of homogeneous carbon nanostructures by the plasma-arc method. The main aim of this research is to develop a theoretical basis and anode mixture composition, allowing to obtain morphologically uniform carbon nanostructures. It was used arc evaporation method for synthesis of nanostructures. Identification of carbon nanostructures and sizes was carried out by electron microscopy. Carbon nanoparticles, carbon filamentary structure and carbon fiber were obtained using the proposed components that make up the anode mixture, pitch coke, coal tar and coal medium temperature pitch. The carbon content in pitch coke and in the form of aromatics in the coal medium temperature pitch may allow to obtain more homogeneous morphologically carbon nanostructure. The research results can be used to improve the strength and corrosion resistance of metals. We propose to use the processing products of coal as part of the anode mixture to produce morphologically uniform carbon nanostructures by the plasma-arc method.

Author Biographies

Анатолий Григорьевич Старовойт, National Metallurgical Academy of Ukraine, ave. Gagarina, 4, Dnepropetrovsk, Ukraine, 49600

Doctor of Technical Sciences, Professor, Head of Department

Department of metallurgical fuel and refractories

Лина Геннадьевна Кеуш, National Metallurgical Academy of Ukraine, ave. Gagarina, 4, Dnepropetrovsk, Ukraine, 49600

Postgraduate Student

Department of metallurgical fuel and refractories

Владимир Михайлович Шмалько, Ukrainian State Research Institute of Carbochemistry, st. Vesnina, 7, Kharkiv, Ukraine, 61023

Candidate of Technical Sciences, Senior Researcher

References

  1. Qiu, J., Wang, Y., Wu, F., Cheng, H., Zheng, G., Uchiyama, Y. (2004). Large-scale synthesis of high-quality double-walled carbon nanotubes from coal-based carbon rods in vacuum by arc discharge. Preprints of papers – American chemical society, Division of fuel chemistry, Vol. 49, № 2, 874–875.
  2. Qiu, J., Li, Y., Wang, Y., Wang, T., Zhao, Z. et al. (2003). High-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon, Vol. 41, № 11, 2170–2173. doi:10.1016/s0008-6223(03)00242-2
  3. Gorbunov, A. A., Jost, O., Pompe, W., Graff, A. (2002). Solid-liquid-solid growth mechanism of single-wall carbon nanotubes. Carbon, Vol. 40, № 1, 113–118. doi:10.1016/s0008-6223(01)00080-x
  4. Pang, L. S. K., Vassallo, A. M., Wilson, M. A. (1992). Coal as a feedstock for fullerene production and purification. American Chemical Society, Vol. 37, № 2, 564–567.
  5. Williams, K. A., Tachibana, M., Allen, J. L., Grigorian, L., Cheng, S.-C., Fang, S. L. et al. (1999). Single-wall carbon nanotubes from coal. Chemical Physics Letters, Vol. 310, № 1-2, 31–37. doi:10.1016/s0009-2614(99)00725-3
  6. Qiu, J., Wang, Z., Zhao, Z., Wang, T. (2007). Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel, Vol. 86, № 1-2, 282–286. doi:10.1016/j.fuel.2006.05.024
  7. Li, Y. F., Qiu, J. S., Zhao, Z. B., Wang, T. H., Wang, Y. P., Li, W. (2002). Bamboo-shaped carbon tubes from coal. Chemical Physics Letters, Vol. 366, № 5-6, 544–550. doi:10.1016/s0009-2614(02)01642-1
  8. Qiu, J., Li, Y., Wang, Y., Liang, C., Wang, T., Wang, D. (2003). A novel form of carbon micro-balls from coal. Carbon, Vol. 41, № 4, 767–772. doi:10.1016/s0008-6223(02)00392-5
  9. Zhou, Y., Xiao, N., Qiu, Z., Sun, Y., Sun, T., Zhao, Z., Zhang, Y. Tsubaki, N. (2008). Preparation of carbon microfibers from coal liquefaction residue. Fuel, Vol. 87, № 15-16, 3474–3476. doi:10.1016/j.fuel.2008.05.017
  10. Shmal'ko, V. M., Zelenskii, O. I., Tolmachev, N. V., Shul'ga, I. V. (2009). Obrazovanie uglerodnyh nanostruktur pri koksovanii uglei. Uglehimicheskii zhurnal, 3-4, 37–41.
  11. Privalov, V. E., Stepanenko, M. A. (1981). Kamennougol'nyi pek. Poluchenie, pererabotka, primenenie. Moscow: Metallurgiia, 208.
  12. Stepanenko, M. A., Bron, Ya. A., Kulakov, N. K. (1961). Proizvodstvo pekovogo koksa. Kharkiv: State Science and Technology Publishing House of Ferrous and Nonferrous Metallurgy, 311.
  13. Yu, J., Lucas, J., Strezov, V., Wal, T. (2003). Coal and carbon nanotube production. Fuel, Vol. 82, № 15-17, 2025–2032. doi:10.1016/s0016-2361(03)00189-3
  14. Krestinin, A. V., Moravskii, A. V., Tesner, P. A. (1998). Kineticheskaia model' obrazovaniia fullerenov С60 i С70 pri kondensatsii uglerodnogo para. Himicheskaia fizika, Vol. 17, № 9, 70–84.

Published

2015-11-26

How to Cite

Старовойт, А. Г., Кеуш, Л. Г., & Шмалько, В. М. (2015). Development of anode mixture composition from processing products of coal to produce carbon nanostructures by the plasma-arc method. Technology Audit and Production Reserves, 6(7(26), 29–32. https://doi.org/10.15587/2312-8372.2015.55483

Issue

Section

Technology organic and inorganic substances