Research and development of synthesis technologies of transport enterprise multi-control neural network algorithms
DOI:
https://doi.org/10.15587/2312-8372.2016.71973Keywords:
intelligent system, dynamically variable objects, transport enterprisesAbstract
Currently, the problem of designing automatic control systems of dynamically variable objects is characterized by the transition from adaptive management paradigm to intelligent control paradigm. This is caused by continuous complication of objects and conditions of their operation, the advent of new classes of computing devices (distributed computing), high-performance telecommunication channels, and a sharp increase in the requirements for reliability and efficiency of control processes in a significant priori and posteriori uncertainty. Accounting for these factors is possible only through the transition from «hard» algorithms of parametric and structural adaptation to the anthropomorphic principle of forming control.
Given the characteristics of the modern enterprise, when the head and structural units quickly make decisions and monitor its implementation, it comes very clearly understand the need of artificial intelligence as an assistant in the work of transport enterprise. However, existing methods are outdated and not fully perform the role of assistant. The latest trends in this matter are modern methods of creating intelligent systems that can learn in the process, based on neural networks.
The paper proposed synthesis technologies of transport enterprise neural network algorithms. Better use of major resources of the enterprise is possible through the use of self-learning neural networks to control transport enterprise. Using a synthesis of known algorithms may be more correct setup of the whole system and increase the speed of information processing and decision of optimal solution.
References
- Artsybashev, A. Yu., Nikitin, Yu. R. (2014). Diagnostirovanie privodov mashin na osnove neironnyh setei. Acta Facultatis forestalis Zvolen, 56 (1), 201–208.
- Kostin, N. S. (2013). Mesto modul'nyh neironnyh setei v klassifikatsii iskusstvennyh neironnyh setei. Intellektual'nyi potentsial XXІ veka: stupeni poznaniia, 19, 91–95.
- Sinchuk, O. N., Boiko, S. N. (2014). Neironnye seti i upravlenie protsessom upravleniia elektrosnabzheniem obiektov ot kombinirovannyh elektricheskih setei. Tekhnichna elektrodynamika, 5, 53–55.
- Manzhula, V. G., Fediashov, D. S. (2011). Neironnye seti Kohonena i nechetkie neironnye seti v intellektual'nom analize dannyh. Fundamental'nye issledovaniia, 4, 108–114.
- Tarkov, M. S. (2013). Otobrazhenie parallel'nyh programm na mnogoiadernyh komp'iuterah s rekurrentnymi neironnymi setiami. Prikladnaia diskretnaia matematika, 2 (20), 50–58.
- Kolbasin, V. (2011). Parallel processing of data flow by artificial neural networks on the CUDA platform. Eastern-European Journal Of Enterprise Technologies, 3(3(51)), 54–57. Available: http://journals.uran.ua/eejet/article/view/1560/1458
- Gorbacheev, S. V., Syriamkin, V. I. (2014). Neiro-nechetkie metody v intellektual'nyh sistemah obrabotki i analiza mnogomernoi informatsii. Tomsk: Izdatel'stvo Tomskogo universiteta, 441.
- Semenov, A. M. et. al. (2014). Intellektual'nye sistemy. Orenburg: OGU, 236.
- Vasil'ev, A. N., Tarhov, D. A. (2014). Neirosetevye metody i algoritmy matematicheskogo modelirovaniia. Sankt-Peterburg: Izdatel'stvo Politehnicheskogo universitetta, 581.
- Ashby, W. R. (2014). An Introduction to Cybernetics. Translation from English. Moscow: URSS: LENAND, 432.
- Andreichikov, A. V., Andreichikova, O. N. (2014). Sistemnyi analiz i sintez strategicheskih reshenii v innovatike. Moscow: URSS, 304.
- Guliaev, V. A. (1993). Tehnicheskaia diagnostika upravliaiushchih sistem. Kyiv: Naukova dumka, 208.
- Denisov, A. A., Kolesnikov, D. M. (1982). Teoriia bol'shih sistem upravleniia. Leningrad: Energoizdat, 288.
- Komartsova, L. G., Maksimov, A. V. (2002). Peirokomp'iutery. Moscow: MSTU n.a. Baumana, 320.
- Kuzovkov, P. T. (1976). Modal'noe upravlenie i nabliudaiushchie ustroistva. Moscow: Mashinostroenie, 184.
- In: Sadovskii, M. G. (2014). Neiroinformatika, eio prilozheniia i analiz danniah. Materialy 22 Vserossiiskogo seminara, 26-28 sentiabria 2014 goda. Krasnoiarsk: IVM SO RAN, 195.
- Molchanov, I. N. (1987). Mashinnye metody resheniia prikladnyh zadach. Algebra, priblizhenie funktsii. Kyiv: Naukova dumka, 288.
- Mashkina, I. V. (1989). Reguliator peremennoi struktury chastoty vrashcheniia rotora gazoturbinnogo dvigatelia v sisteme upravleniia reaktivnym soplom. Ufa: UAI, 21.
- Melsa, J., Jones, S. (1981). Programmy v pomoshch' izuchaiushchim teoriiu lineinyh sistem upravleniia. Translation from English. Moscow: Mashinostroenie, 199.
- Neterson, D. (1984). Teoriia setei Netri i modelirovanie sistem. Translation from English. Moscow: Mir, 264.
- Gregor, D., Toral, S., Ariza, T., Barrero, F., Gregor, R., Rodas, J., Arzamendia, M. (2016). A methodology for structured ontology construction applied to intelligent transportation systems. Computer Standards & Interfaces, 47, 108–119. doi:10.1016/j.csi.2015.10.002
- Larue, G. S., Rakotonirainy, A., Haworth, N. L., Darvell, M. (2015). Assessing driver acceptance of Intelligent Transport Systems in the context of railway level crossings. Transportation Research Part F: Traffic Psychology and Behaviour, 30, 1–13. doi:10.1016/j.trf.2015.02.003
- Satunin, S., Babkin, E. (2014). A multi-agent approach to Intelligent Transportation Systems modeling with combinatorial auctions. Expert Systems with Applications, 41 (15), 6622–6633. doi:10.1016/j.eswa.2014.05.015
- Demin, D. A. (2012). Synthesis of optimal temperature regulator of electroarc holding furnace bath. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 52–58.
- Mendes, J., Araújo, R., Sousa, P., Apóstolo, F., Alves, L. (2011). An architecture for adaptive fuzzy control in industrial environments. Computers in Industry, 62 (3), 364–373. doi:10.1016/j.compind.2010.11.001
- Wai, R.-J., Chen, M.-W., Yao, J.-X. (2016). Observer-based adaptive fuzzy-neural-network control for hybrid maglev transportation system. Neurocomputing, 175, 10–24. doi:10.1016/j.neucom.2015.10.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Денис Юрьевич Зубенко, В’ячеслав Михайлович Шавкун, Владислав Ігоревич Скурихін, Олександр Вадимович Донець, Наталя Павлівна Лукашова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.