Verification of CIRCLE_3D complex to justify the strength of critical equipment of nuclear power station

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.74475

Keywords:

technical condition, code, mechanical equipment, residual life, strength, verification, degradation

Abstract

The article deals with the development and verification of CIRCLE_3D complex, which is used for calculation of technical parameters (first of all – the strength characteristics) for survey of critical equipment of nuclear power plant, such as mechanical equipment of the first circuit unit. The calculations are necessary to evaluate the technical condition of equipment considering its degradation and aimed at ensuring nuclear and radiation safety in dealing with mechanical equipment life extension of reactor unit of nuclear power plants. A brief description of the purpose and operational conditions of the critical equipment of nuclear power plant, and the algorithm for technical condition assessment using computer codes to determine the predictive value of the residual life are given. Verification of CIRCLE_3D complex is performed to validate the software implementation of computational methods based on the finite element method. The comparison of simulation results by code CIRCLE_3D and standard PNAE G-7-002-86 and the test results of internationally recognized code ANSYS is given. An excellent reproducibility of test results is noted.

Author Biographies

Роман Михайлович Тріщ, Ukrainian Engineering Pedagogics Academy, Str. Unyversytetskaya, 16, Kharkiv, Ukraine, 61003

Doctor of Technical Sciences, Professor

Department of labor protection, standardization and certification

Наталія Петрівна Гиря, National Technical University «Kharkiv Polytechnic Institute», 21 Kirpicheva str., Kharkiv, Ukraine, 61002

Candidate of Physical and Mathematical Sciences, Associate Professor

Department of Higher Mathematics

Микола Євгенович Пахалович, LLC «Expert Technical Center «ENERGORESURS», 1 Laboratornyi ave., Kyiv, Ukraine, 01133

Director

Сергій Олександрович Кучер, LLC «Expert Technical Center «ENERGORESURS», 1 Laboratornyi ave., Kyiv, Ukraine, 01133

Head of Department of vascular resistance and pumps NF

References

  1. Kompleksna (zvedena) prohrama pidvyshchennia rivnia bezpeky enerhoblokiv atomnykh stantsii» (KzPB). (2010). Introduced: 07.12.2010. Kyiv: HKIaR Ukrainy.
  2. NP 306.2.141-2008. Zahalni polozhennia bezpeky atomnykh stantsii. (2008). Introduced: 08.04.2001. Kyiv: HKIaR Ukrainy, 62.
  3. SOU NAEK 080:2014. Dovhostrokova ekspluatatsiia diiuchykh enerhoblokiv AES. Zahalni polozhennia. Zatverdzheno nakazom Prezydenta DP «NAEK «Enerhoatom» vid 23.01.2015 № 74.
  4. Pakhalovich, N., Kucher, S., Levutskyi, Yu., Malyshko, S., Girya, N. (2016). Classification of regulatory support for extension of life of mechanical equipment of nuclear power plants. Eastern-European Journal Of Enterprise Technologies, 1(8(79)), 21–28. doi:10.15587/1729-4061.2016.59441
  5. STP 0.41.076-2008. Analis i otsenka besopasnosti. Poriadok ispol'sovaniia raschetnyh kodov dlia obosnovaniia besopasnosti iadernyh energeticheskih ustanovok. Metodicheskie ukasaniia. (2008). Introduced: 02.12.2008. Kyiv: NAEK «Energoatom» Ukrainy,
  6. Levutskyi, Yu., Kucher, S., Pakhalovich, N. (2013). Kompiuterna prohrama «Raschetnыi kompleks CIRCLE-3D». Svidotstvo pro reiestratsiiu avtorskoho prava na tvir № 50314 vid 19.07.2013 r. State Intellectual Property Service of Ukraine.
  7. Shcharaevskii, I. G., Fialko, N. M., Nosovskii, A. V., Simin, L. B., Shcharaevskii, G. I. (2015). Problemy sovershchenstvovaniia komp'iuternyh teplogidravlicheskih kodov. Problemy bezpeky atomnykh elektrostantsii i Chornobylia, 25, 30–38.
  8. Krutikov, A. A., Nikolaeva, A. V., Skibin, A. P., Nadinskii, Yu. N. (2013). Metodicheskie osnovy CFD dlia podderzhki proektirovaniia RU. OAO OKB «GIDROPRESS», 22.
  9. NEA/CSNI/R(2007)5. Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications. (2007, May 15). Nuclear Energy Agency, 154.
  10. Nea/CSNI/R(2007)13. Assessment of CFD Codes for Nuclear Reactor Safety Problems. (2008, January 28). Nuclear Energy Agency, 180.
  11. Prošek, A., Auria, F. D’, Richards, D. J., Mavko, B. (2006, February). Quantitative assessment of thermal–hydraulic codes used for heavy water reactor calculations. Nuclear Engineering and Design, Vol. 236, № 3, 295–308. doi:10.1016/j.nucengdes.2005.07.004
  12. Safety of Nuclear Power and Industry Facilities. The Federal Program «Nuclear Power Technologies of New Generation». Nuclear Safety Institute of the Russian Academy of Sciences. Available: http://en.ibrae.ac.ru/contents/86/. Last accessed: 20.06.2016.
  13. IAEA-EBP-SALTO. Safety Aspects of Long Term Operation of Water Moderated Reactors. Recommendations on the Scope and Content of Programmers for Safe Long Term Operation. Final Report of the Extrabudgetary Programmer on Safety Aspects Long Term Operation of Water Moderated Reactors. (2007, July). Vienna: IAEA, 224. Available: https://www-ns.iaea.org/downloads/ni/salto/ebp-salto_web.pdf
  14. Methodology and Supporting Research for Pressurized Thermal Shock Evaluation. (2000). Vienna, Austria, 458.
  15. NEA/CSNI/R(99)3. Comparison Report of RPV Pressurised Thermal Shock International Comparative Assessement Study (PTS ICAS). (1999, November). Nuclear Energy Agency, 132.
  16. PNAE G-7-002-86. Normy rascheta na prochnost' oborudovaniia i truboprovodov atomnyh energeticheskih ustanovok. (1989). Introduced: 01.07.1987. Moscow: Energoatomisdat, 525.
  17. ANSYS. Available: http://www.ansys.com/. Last accessed: 20.06.2016.

Published

2016-07-26

How to Cite

Тріщ, Р. М., Гиря, Н. П., Пахалович, М. Є., & Кучер, С. О. (2016). Verification of CIRCLE_3D complex to justify the strength of critical equipment of nuclear power station. Technology Audit and Production Reserves, 4(2(30), 44–52. https://doi.org/10.15587/2312-8372.2016.74475

Issue

Section

Mathematical Modeling: Original Research