Choice and ground for direction of energy efficiency increasing for Ukrainian buildings and facilities

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.85402

Keywords:

thermal modernization of buildings and structures, facade heat insulation, modernization of pipelines of the central water heating system

Abstract

The object of research is a complex thermal modernization of a building or structure, namely its tandem as part of a heating system and facade thermal insulation. One of the most problematic places is not enough to study the features of the thermal regime in the operation of buildings and structures, as well as the lack of optimization approaches to carrying out thermal modernization.

In the course of the study, a comprehensive approach to the solution of the set tasks is used, including economic and statistical analysis, analysis of world experience and synthesis of results and retrospectives, a historical, evolutionary and logical approach. System theory and system analysis are also used to identify strategic prospects for a significant reduction in the energy consumption of existing Ukrainian buildings and structures and, in the future, dissemination of the results obtained to foreign buildings and facilities that have similar energy efficiency challenges.

Based on the analysis of patent information sources, innovative organizational and technical solutions for the thermal modernization of Ukrainian buildings and structures are proposed. In particular, it is proposed to introduce new elements in the system of complex thermal modernization in the form of new transit pipelines of a two-pipe system of central water heating. No less important task is the optimal placement of new transit pipelines of a two-pipe system of central water heating with reference to the locations of existing heating appliances.

The expected positive effect is achieved due to the provision of the possibility to take into account and regulate the consumption of heat by consumers taking into account the operational factors of maintaining the specified temperature regime inside the heated premises of buildings and structures.

Due to this, it is possible to increase the efficiency of using heat energy in the proposed system of central water heating of premises and to reduce the consumption of thermal energy for maintaining the optimal conditions for living in a residential area. And it is possible in almost all climatic zones, where there is a need for thermal modernization, especially for housing, mainly the period of construction until the 90s of the last century.

Author Biographies

Andriy Yeromin, «Complex Engineering Solutions» LLC & Online Store HeatRecovery, 21, Dehtyarivska str., Kyiv, Ukraine, 04119

Director

Aleksandr Kolosov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Science, Professor, Senior Researcher, Member of the Academy of Sciences of Higher Education ofUkraine, Ukrainian Patent Attorney

Department of Chemical, Polymeric and Silicate Machine Building

References

  1. Pyrkov, V. V. (2010). Gidravlicheskoe regulirovanie sistem otopleniia i ohlazhdeniia: teoriia i praktika. Kyiv: Taki spravy, 5.
  2. DSTU B V.3.2-3:2014. Nastanova z vykonannia termomodernizatsii zhytlovykh budynkiv. (2014). Introduced: 01.10.2015. Kyiv: Minrehion Ukrainy, 70.
  3. V termomodernizatsii nuzhdaetsia 80 % zhilogo fonda Ukrainy. (08.10.2015). Informatsionnoe agentstvo LIGABiznesInform. Available at: http://biz.liga.net/all/nedvizhimost/novosti/3127248-v-termomodernizatsii-nuzhdaetsya-80-zhilogo-fonda-ukrainy.htm. Last accessed: 12.01.2018.
  4. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1975). Teploperedacha. Moscow: Energiia, 423.
  5. Tytar, S. S. (2002). Systemy enerhopostachannia promyslovykh pidpryiemstv. Odesa: AT BAKhVA, 356.
  6. Saviovskii, V. V., Bolotskih, O. N. (1999). Remont i rekonstruktsiia grazhdanskih zdanii. Kharkov: Vaterpas, 287.
  7. Weglarz, A., Gilewski, P. G. (2016). A Method of Evaluation of Polioptimal Thermo-modernization Schemes of Buildings. Procedia Engineering, 153, 862–865. doi:10.1016/j.proeng.2016.08.194
  8. Kuzniar, K., Zajac, M. (2017). Numerical evaluation of natural vibration frequencies of thermo-modernized apartment buildings subjected to mining tremors. Procedia Engineering, 199, 296–301. doi:10.1016/j.proeng.2017.09.039
  9. Hurnik, M., Specjal, A., Popiolek, Z., Kierat, W. (2018). Assessment of single-family house thermal renovation based on comprehensive on-site diagnostics. Energy and Buildings, 158, 162–171. doi:10.1016/j.enbuild.2017.09.069
  10. Zender-Swiercz, E., Piotrowski, J. Z. (2013). Thermomodernization a building and its impact on the indoor microclimate. Structure and Environment: Architecture, Civil Engineering, Environmental Engineering and Energy, 5 (3), 37–40.
  11. Jaworska-Michalowska, M. (2009). Ochrona historycznej elewacji w procesie termomodernizacji – wybrane zagadnienia. Czasopismo Techniczne. Budownictwo, 106 (2-B), 151–161.
  12. Sadowska, B., Sarosiek, W. (2014). Efficiency of raising low-energy buildings and thermomodernization of existing ones. Biuletyn Wojskowej Akademii Technicznej, 63 (1), 179–191.
  13. Rutkowska, G., Wojnowski, D. (2014). Analysis of variants thermomodernization of a dwelling house from a point of view of optimal energetic demands. Inzynieria Ekologiczna, 37, 162–173.
  14. Lundström, L., Wallin, F. (2016). Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system. Applied Energy, 161, 290–299. doi:10.1016/j.apenergy.2015.10.024
  15. Balić, D., Maljković, D., Lončar, D. (2017). Multi-criteria analysis of district heating system operation strategy. Energy Conversion and Management, 144, 414–428. doi:10.1016/j.enconman.2017.04.072
  16. Kolosov, A. E., Virchenko, G. A., Kolosova, E. P., Virchenko, G. I. (2015). Structural and Technological Design of Ways for Preparing Reactoplastic Composite Fiber Materials Based on Structural Parametric Modeling. Chemical and Petroleum Engineering, 51 (7–8), 493–500. doi:10.1007/s10556-015-0075-3
  17. Churylo, O. V. (15.12.2005). Sposib rekonstruktsii systemy opalennia budynku. Patent UA 11514 U, MPK F24D3/00, F16L9/00, E04G23/00. Appl. No. u200507560. Filed 29.07.2005. Bull. No. 12.
  18. Moulding Prefabricated Wall or Roof Panels. (20.08.1980). UK Patent applicaton GB 2039819 A, Int. Cl. B29D3/02.
  19. Tuerk, M., assignee: Diedrichsen Jens Dipl. Ing. (11.03.1999). Building wall insulation section refurbishing and heating older buildings. Patent DE 19740074 A1, Int. Cl. E04B1/78.
  20. Jansen, H. (04.07.1991). Two-panel wall cladding section – has heat insulating layer and heating pipe between panels. Patent DE 4031483 A1, Int. Cl. E04B2/72.
  21. Hamkokov, R. M., Panibratov, Yu. P., Krutikov, P. G. (16.12.1999). Sistema teplosnabzheniia mnogoetazhnogo zdaniia. Patent RU 12155 U1, MPK E03S1/04.
  22. Kasianov, N. M. (20.06.2011). Sistema teplosnabzheniia mnogokvartirnogo zdaniia s kak minimum odnoi podiezdnoi sektsiei. Patent RU 105720 U1, MPK E24D3/00. Bull. No. 17.
  23. Kasianov, N. M. (27.03.2015). Sistema teplosnabzheniia mnogokvartirnogo doma. Patent RU 151295 U1, MPK E24D3/02. Bull. No. 9.
  24. Orlov, D. P. (27.06.2007). Sposob otopleniia zdanii. Patent RU 2301944 S1, MPK F24D15/00. Bull. No. 18.
  25. Robakiewicz, M., Panek, A. (2014). Termomodernizatsiia zhilogo doma. Kyiv, Available at: http://teplydim.com.ua/static/storage/filesfiles/Danfoss_manual_Thermal_Moderniz_2014_Rus.pdf. Last accessed: 12.01.2018.
  26. Zender-Swiercz, E., Telejko, M. (2016). Impact of Insulation Building on the Work of Ventilation. Procedia Engineering, 161, 1731–1737. doi:10.1016/j.proeng.2016.08.766
  27. Lulic, H., Civic, A., Pasic, M., Omerspahic, A., Dzaferovic, E. (2014). Optimization of Thermal Insulation and Regression Analysis of Fuel Consumption. Procedia Engineering, 69, 902–910. doi:10.1016/j.proeng.2014.03.069
  28. González-Aguilera, D., Lagüela, S., Rodríguez-Gonzálvez, P., Hernández-López, D. (2013). Image-based thermographic modeling for assessing energy efficiency of buildings façades. Energy and Buildings, 65, 29–36. doi:10.1016/j.enbuild.2013.05.040
  29. Sierra-Pérez, J., Boschmonart-Rives, J., Gabarrell, X. (2016). Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions. Journal of Cleaner Production, 113, 102–113. doi:10.1016/j.jclepro.2015.11.090
  30. Sulakatko, V., Lill, I., Witt, E. (2016). Methodological Framework to Assess the Significance of External Thermal Insulation Composite System (ETICS) on-site Activities. Energy Procedia, 96, 446–454. doi:10.1016/j.egypro.2016.09.176
  31. Elarga, H., De Carli, M., Zarrella, A. (2015). A simplified mathematical model for transient simulation of thermal performance and energy assessment for active facades. Energy and Buildings, 104, 97–107. doi:10.1016/j.enbuild.2015.07.007
  32. Vox, G., Blanco, I., Schettini, E. (2018). Green façades to control wall surface temperature in buildings. Building and Environment, 129, 154–166. doi:10.1016/j.buildenv.2017.12.002
  33. Cvetković, D., Bojić, M. (2014). Optimization of thermal insulation of a house heated by using radiant panels. Energy and Buildings, 85, 329–336. doi:10.1016/j.enbuild.2014.09.043
  34. Pflug, T., Nestle, N., Kuhn, T. E., Siroux, M., Maurer, C. (2018). Modeling of facade elements with switchable U-value. Energy and Buildings, 164, 1–13. doi:10.1016/j.enbuild.2017.12.044
  35. Kremensas, A., Stapulionienė, R., Vaitkus, S., Kairytė, A. (2017). Investigations on Physical-mechanical Properties of Effective Thermal Insulation Materials from Fibrous Hemp. Procedia Engineering, 172, 586–594. doi:10.1016/j.proeng.2017.02.069
  36. Aparicio-Fernández, C., Vivancos, J.-L., Ferrer-Gisbert, P., Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering, 66 (1–2), 563–570. doi:10.1016/j.applthermaleng.2014.02.041
  37. Kolosov, A. E., Sivetskii, V. I., Kolosova, E. P., Lugovskaya, E. A. (2013). Procedure for analysis of ultrasonic cavitator with radiative plate. Chemical and Petroleum Engineering, 48 (11–12), 662–672. doi:10.1007/s10556-013-9677-9
  38. Klychnikov, R. Yu., Ezerskii, V. A., Monastyrev, P. V. (2011). Tehniko-ekonomicheskaia otsenka termomodernizatsii zhilyh zdanii. Moscow: ASV, 176.
  39. Zaitsev, D. V., Klymchuk, O. A., Balasanian, H. A. (2015). Analiz osnovnykh sposobiv termomodernizatsii budivel ta metodyka yikh vprovadzhennia. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia, 17, 156–160.
  40. Borys, G. (2015). Selected directions of increasing efficiency in supporting thermomodernization in buildings from public funding. Prace Naukowe Uniwersytetu Ekonomicznego We Wrocławiu, 397, 68–77. doi:10.15611/pn.2015.397.05
  41. Ickiewicz, I. (2013). Building thermomodernization and reducing air pollution. Ecological Chemistry and Engineering S, 20 (4). 805–816. doi:10.2478/eces-2013-0056
  42. Wciślik, S. (2017). Energy efficiency and economic analysis of the thermomodernization of forest lodges in the Świętokrzyski National Park. EPJ Web of Conferences, 143, 02144. doi:10.1051/epjconf/201714302144
  43. Kryk, B. (2016). Rachunek korzyści ekologicznych z inwestycji termomodernizacyjnych na przykładzie spółdzielni mieszkaniowych województwa zachodniopomorskiego / Account of environmental benefits from thermomodernization investment on the example of cooperative housing of West Pomeranian Voivodeship. Prace Naukowe Uniwersytetu Ekonomicznego We Wrocławiu, 454, 92–101. doi:10.15611/pn.2016.454.08
  44. Basinska, M., Koczyk, H., Kosmowski, A. (2015). Assessment of Thermo Modernization Using the Global Cost Method. Energy Procedia, 78, 2040–2045. doi:10.1016/j.egypro.2015.11.204
  45. Fanti, M. P., Mangini, A. M., Roccotelli, M. (2018). A simulation and control model for building energy management. Control Engineering Practice, 72, 192–205. doi:10.1016/j.conengprac.2017.11.010
  46. Adamczyk, J., Dylewski, R. (2017). Analysis of the sensitivity of the ecological effects for the investment based on the thermal insulation of the building: A Polish case study. Journal of Cleaner Production, 162, 856–864. doi:10.1016/j.jclepro.2017.06.123
  47. Yeromin, A. V. (27.11.2017). Systema kompleksnoi termomodernizatsii budivel i sporud za Yerominym. Patent UA 121347 U, MPK F24D3/00, F16L59/00. Bull. No. 22.
  48. Yeromin, A. V. (27.11.2017). Sposib kompleksnoi termomodernizatsii budivel i sporud za Yerominym. Patent UA 121348 U, MPKF24D 3/00, F16L59/00. Bull. No. 22.

Published

2017-12-28

How to Cite

Yeromin, A., & Kolosov, A. (2017). Choice and ground for direction of energy efficiency increasing for Ukrainian buildings and facilities. Technology Audit and Production Reserves, 1(1(39), 48–55. https://doi.org/10.15587/2312-8372.2018.85402

Issue

Section

Technology and System of Power Supply: Original Research