Analysis of efficiency and reliability of blast–furnace process waste heat recovery systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.92912

Keywords:

hot blast stove, heat recovery, recuperative heat exchanger, efficiency

Abstract

The object of research is a hot blast generating system, which consists of three hot blast stoves with sequential mode of operation. One of the factors that reduce the hot blast stove block efficiency is the existence of losses with the waste gases, the heat of which can be recovered and used for combustion air preheating.

In order to improve the efficiency of a hot blast generating system the possibility of using of recuperative heat exchanger for waste heat recovery is observed. The process of initial parameters determining (the required level of combustion air preheating, waste gases temperature and flow rate at the inlet of the heat exchanger) is described. Software based on using of an original mathematical model and used for calculating of the parameters of the waste heat recovery heat exchanger was created. These data provide tools for refined calculation of heat recovery systems based on recuperative heat exchangers.

It is shown that the combustion air preheating results in a reduction of the coke oven gas flow rate. The calculations results in building of temperature distribution diagrams that allow to define the areas of corrosion. Such areas in the observed recuperative heat exchanger model appear at temperatures below 26 ºC.

Thus, the set approaches can be used to refine the calculation of heat-transfer equipment of waste heat recovery systems to improve their reliability, long life, analyze their technical and economic parameters. This will improve the energy efficiency of the hot blast stoves block and reduce the cost of iron production.

Author Biographies

Anton Ganzha, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Thermal Engineering and Energy Efficient Technologies

Olena Zaiets, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Lecturer-Intern

Department of Thermal Engineering and Energy Efficient Technologies

Aleksndr Koshelnik, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Assistant Professor

Department of Thermal Engineering and Energy Efficient Technologies

References

  1. Shkliar, F. R., Malkin, V. M., Kashtanova, S. P., Kalugin, Ya. P., Sovetkin, V. L. (1982). Domennye vozduhonagrevateli (konstruktsiia, teoriia, rezhimy raboty). Moscow: Metallurgiia, 176.
  2. Gres, L. P. (2008). Vysokoeffektivnyi nagrev domennogo dut'ia. Dnepropetrovsk: Porogi, 492.
  3. In: Koshelnyk, V. M.; NTU «KhPI». (2003). Teplotekhnichni rozrakhunky ta vybir parametriv domennoho povitronahrivacha 2 DP 1 VAT «Donetskyi metalurhiinyi zavod». Research Report № 16201/21720. Kharkiv, 23.
  4. Koshelnik, A. V., Koshelnik, V. M., Davydenko, P. D. (2007). Osobennosti rezhimov otopleniia i raboty vozduhonagrevatelei domennyh pechei pri zamene prirodnogo gaza iskusstvennym gazoobraznym toplivom. Energosberezhenie. Energetika. Energoaudit, 8, 18–22.
  5. Oluleye, G., Jobson, M., Smith, R., Perry, S. J. (2016). Evaluating the potential of process sites for waste heat recovery. Applied Energy, 161, 627–646. doi:10.1016/j.apenergy.2015.07.011
  6. Vatanakul, M., Cruz, E., McKenna, K., Hynes, R., Sarvinis, J. (2011). Waste Heat Utilization to Increase Energy Efficiency in the Metals Industry. Energy Technology, 1–16. doi:10.1002/9781118061886.ch1
  7. Pardo, N., Moya, J. A. (2013). Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry. Energy, 54, 113–128. doi:10.1016/j.energy.2013.03.015
  8. Lin, P.-H., Wang, P.-H., Chen, H.-T., Chung, W.-L. (2007). Efficiency improvement of the hot blast generating system by waste heat recovery. Energy and Sustainability, 113–121. doi:10.2495/esus070121
  9. Rao, K. N., Hiregoudar, C., Jeethendra, M. (2016). Design and Analysis of Waste Heat Recovery System to Improve the Performance of Blast Furnace. International Journal for Ignited Minds (IJIMIINDS), 03 (03), 12–19.
  10. Gubinskii, V. I., Vorobieva, L. A. (2006). Teploobmen v metallicheskom trubchatom regeneratore. Metallurgicheskaia teplotehnika, 121–131.
  11. Vorobieva, L. A., Gubinskii, V. I. (2008). Sravnitel'nye harakteristiki miniregeneratorov s sharikovoi i trubnoi nasadkoi. Metallurgicheskaia teplotehnika, 55–68.
  12. Tian, E., He, Y.-L., Tao, W.-Q. (2017). Research on a new type waste heat recovery gravity heat pipe exchanger. Applied Energy, 188, 586–594. doi:10.1016/j.apenergy.2016.12.029
  13. Muszynski, T. (2017). Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Applied Thermal Engineering, 115, 782–792. doi:10.1016/j.applthermaleng.2017.01.021
  14. Soroka, B. S., Vorobiev, N. V., Zgurskiy, V. A. (2013). Modern State and Efficient Analysis of Heat Recovery in Fuel Furnaces Using High Temperature Recuperators. Part 1. Energetika. Proceedings of CIS higher education institutions and power engineering associations, 3, 60–68.
  15. Gres, L. P., Karakash, E. A., Karpenko, S. A., Koldomasov, S. V. (2014). Povyshenie energoeffektivnosti nagreva domennogo duttia na ekspluatiruemyh domennyh pechah putem ustanovki sistemy teploobmennikov dlia nagreva komponentov goreniia i modernizatsii vozduhonagrevatelei. Metall i lite Ukrainy, 5/6, 43–47.
  16. Karpenko, S. A., Stasevskii, S. L., Stepanenko, A. N., Zaslavskii, V. S., Vishnevskii, B. N., Gusarov, A. S., Sopikova, N. B., Grigorenko, E. I. (2012). Sistemy utilizatsii teploty othodiashchih gazov vozduhonagrevatelei domennyh pechei v proektah GP «Ukrgipromez». Metallurgicheskaia i gornorudnaia promyshlennost', 1, 103–104.
  17. Averin, S. I. et al.; In: Taits, N. Yu. (1969). Raschety nagrevatel'nyh pechei. Ed. 2. Kyiv: Tehnіka, 540.
  18. Zaiets, O. (2016). Influence of the coke gas share in the fuel on the required level of heating of blast stoves combustion air using their flue gase heat. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 42 (1214), 43–48. doi:10.20998/2413-4295.2016.42.07
  19. Koshelnik, A. (2007). Metodyka stvorennia universalnoho obchysliuvalnoho kompleksu dlia modeliuvannia reheneratyvnykh teploobminnykiv vysokotemperaturnykh plavylnykh ahrehativ. Eastern-European Journal of Enterprise Technologies, 2(3 (26)), 47–50.
  20. Koshelnik, A., Zaiets, O., Koshelnik, V. (2012). Determination features of flow rate and temperature of combustion products in the wastegas pipeline of the hot blast stoves. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 50 (956), 133–139.
  21. Ganzha, A., Zaiets, O., Pidkopai, V., Marchenko, N. (2016). Analysis of the Efficiency of Heat-Exchangers – Heat Recovery Units for Energy Technology Systems and Units. Bulletin of the National Technical University «KhPI» Series: Power and Heat Engineering Processes and Equipment, 10 (1182), 56–60. doi:10.20998/2078-774x.2016.10.08
  22. Shah, R. K., Sekulic, D. P. (2003). Fundamentals of Heat Exchanger Design. Hoboken, NJ: Wiley, 976. doi:10.1002/9780470172605
  23. Kazantsev, E. I. (1975). Promyshlennye pechi. Spravochnoe rukovodstvo dlia raschetov i proektirovaniia. Ed. 2. Moscow: Metallurgiia, 368.

Published

2017-01-31

How to Cite

Ganzha, A., Zaiets, O., & Koshelnik, A. (2017). Analysis of efficiency and reliability of blast–furnace process waste heat recovery systems. Technology Audit and Production Reserves, 1(1(33), 49–54. https://doi.org/10.15587/2312-8372.2017.92912

Issue

Section

Technology and System of Power Supply: Original Research