Development of a new iron-based shape memory alloy

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.93338

Keywords:

iron-based alloy, shape memory effect, oxidation resistance, corrosion resistance

Abstract

The object of research is the technology for producing iron-based shape memory alloy. One of the most problematic moments in this process is the need to increase the degree of shape recovery while maintaining high mechanical characteristics.

It is found that the developed iron-based shape memory alloy has sufficient mechanical properties.

The results show that the surface oxidation isn’t observed for heating of the samples in temperature range 600-1000 ºC.

During the experiment it is found that alloy is corrosion resistant and doesn’t change a mass in 10 % solution of sulfuric acid.

It is found form recovery degree of the proposed alloy is 73-95 % while maintaining such important properties as strength, viscosity, corrosion and oxidation resistance.

Author Biography

Ahmed Mohammed Sundus, National Technical University «Kharkіv Polytechnic Institute», Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate

Department of Foundry Production

References

  1. Huang, S., Leary, M., Ataalla, T., Probst, K., Subic, A. (2012). Optimisation of Ni–Ti shape memory alloy response time by transient heat transfer analysis. Materials & Design, 35, 655–663. doi:10.1016/j.matdes.2011.09.043
  2. Idan, A., Akimov, O., Golovko, L., Goncharuk, O., Kostyk, K. (2016). The study of the influence of laser hardening conditions on the change in properties of steels. Eastern-European Journal Of Enterprise Technologies, 2(5(80)), 69–73. doi:10.15587/1729-4061.2016.65455
  3. Miyazaki, S., Kim, H. Y., Hosoda, H. (2006). Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science and Engineering: A, 438-440, 18–24. doi:10.1016/j.msea.2006.02.054
  4. Dhafer, W., Kostyk, V., Kostyk, K., Glotka, A., Chechel, M. (2016). The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European Journal Of Enterprise Technologies, 3(5(81)), 44–50. doi:10.15587/1729-4061.2016.69809
  5. Kostyk, K. (2015). Development of the high-speed boriding technology of alloy steel. Eastern-European Journal Of Enterprise Technologies, 6(11(78)), 8–15. doi:10.15587/1729-4061.2015.55015
  6. Mereau, T. M., Ford, T. C. (2006). Nitinol Compression Staples for Bone Fixation in Foot Surgery. Journal of the American Podiatric Medical Association, 96 (2), 102–106. doi:10.7547/0960102
  7. Kostyk, K. (2016). Development of innovative method of steel surface hardening by a combined chemical-thermal treatment. Eureka: Physics and Engineering, 6, 46–52. doi:10.21303/2461-4262.2016.00220
  8. Mohanad, M., Kostyk, V., Domin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal Of Enterprise Technologies, 2(5(80)), 45–49. doi:10.15587/1729-4061.2016.65454
  9. Mohd Jani, J., Leary, M., Subic, A., Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design, 56, 1078–1113. doi:10.1016/j.matdes.2013.11.084
  10. Akimov, O., Sundus, M. N. (2015). The effect of heat treatment on the properties of the new iron-base alloy. Eastern-European Journal Of Enterprise Technologies, 6(11(78)), 35–40. doi:10.15587/1729-4061.2015.56370
  11. Akimov, O., Sundus, M. N. (2015). Alloys with shape memory effect. The history of the emergence and development and the physics of their unique properties. Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, 14 (1123), 42–49.
  12. Barbarino, S., Saavedra Flores, E. I., Ajaj, R. M., Dayyani, I., Friswell, M. I. (2014). A review on shape memory alloys with applications to morphing aircraft. Smart Materials and Structures, 23 (6), 063001. doi:10.1088/0964-1726/23/6/063001
  13. GOST 5632-2014. Legirovannye nerzhaveiushchie stali i splavy korrozionnostoikie, zharostoikie i zharoprochnye. Marki. (2016). Introduction: 01.01.2015. Moscow: Standartinform, 49.
  14. Kororin, V. V., Gunko, L. P.; assignee: Ukrainian Academy of Sciences Institute of Metal. (30.12.1990). Splav na osnove zheleza s effektom pamiati formy. Patent SU 1617035 A1, MPK C 22 C 38/14. Appl. № 4646348/31-02. Filed 03.02.1989. Bull. № 48. Available: http://patents.su/2-1617035-splav-na-osnove-zheleza-s-ehffektom-pamyati-formy.html
  15. Yakovynko P. H., Havryliuk V. H., Hlavatska N. I., Ullakko K. M.; assignee: Yakovynko P. H., Havryliuk V. H., Hlavatska N. I., Ullakko K. M. (16.10.2000). Alloy on the base of iron with the effect of shape memory. Patent UA 29209 A, MPK C 22 C 38/14. Appl. № u98010516. Filed 30.01.1998. Bull. № 5. Available: http://uapatents.com/5-29209-splav-na-osnovi-zaliza-z-efektom-pamyati-formi.html
  16. Mohammеd, A. S., Akimov, O., Kostyk, K. (2016). The study of dispersion hardening of the iron-based alloy. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 42 (1214), 11–16. doi:10.20998/2413-4295.2016.42.02

Downloads

Published

2017-01-31

How to Cite

Sundus, A. M. (2017). Development of a new iron-based shape memory alloy. Technology Audit and Production Reserves, 1(1(33), 33–36. https://doi.org/10.15587/2312-8372.2017.93338

Issue

Section

Metallurgical Technology: Original Research