Research of ways to reduce mechanical influence on floccules in a centrifuge
DOI:
https://doi.org/10.15587/2312-8372.2017.93690Keywords:
sludge treatment unit, polydisperse sludge, destruction of floccules, strength of floccules, centrifuge improvementAbstract
The ways to reduce the mechanical influence on flocculed aggregates of polydisperse sludge at its dewatering in the centrifuges are studied. It is determined that by changing the design of the feed pipe and the conditions of slurry supply in the centrifuge can be reduced hydromechanical effect on sludge floccules, providing their minimum destruction. It is proposed to install the guide channels along the side surface of the feed pipe so that the direction of slurry flow from the channels coincides with the direction of rotor rotation. Pulp flows along a tangent to the drum surface and only a small part of the flow experiences shear stresses. Installation of booster sleeve with guide pipes, preventing suspension spraying, in the drum allows the slurry to flow down smoothly directly on the surface of the rotor bath depth. It is found that such improvement of centrifuge design increases the efficiency of treatment of flocculed sludge to 99 % and reduces the entrainment of solids with centrate by minimizing destruction of floccules.
References
- Ofori, P., Nguyen, A. V., Firth, B., McNally, C., Ozdemir, O. (2011). Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chemical Engineering Journal, 172 (2-3), 914–923. doi:10.1016/j.cej.2011.06.082
- Kumar, S., Bhattacharya, S., Mandre, N. R. (2014). Characterization and flocculation studies of fine coal tailings. Journal of the Southern African Institute of Mining and Metallurgy, 114 (11), 945–949.
- Kumar, S., Mandre, N. R., Bhattacharya, S. (2015). Flocculation Studies of Coal Tailings and the Development of a Settling Index. International Journal of Coal Preparation and Utilization, 36 (6), 293–305. doi:10.1080/19392699.2015.1062001
- Parekh, B. K. (2009). Dewatering of fine coal and refuse slurries-problems and possibilities. Procedia Earth and Planetary Science, 1 (1), 621–626. doi:10.1016/j.proeps.2009.09.098
- Ji, Y., Lu, Q., Liu, Q., Zeng, H. (2013). Effect of solution salinity on settling of mineral tailings by polymer flocculants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 430, 29–38. doi:10.1016/j.colsurfa.2013.04.006
- Wang, W.-D., Wang, H.-F., Sun, J.-T., Sun, Y. (2013). Experimental study on slime water flocculation sediment based on the montmorillonite hydration expansion inhibition. Journal of Coal Science and Engineering (China), 19 (4), 530–534. doi:10.1007/s12404-013-0414-y
- Shkop, A. (2015). Dewatering coal polydisperse suspensions. Eastern-European Journal Of Enterprise Technologies, 2(6(74)), 44–49. doi:10.15587/1729-4061.2015.40557
- Poluliah, A. D., Poluliah, D. A. (2013). Tehniko-ekologicheskii analiz tehnologicheskih reshenii po obrabotke zhidkih othodov TsOF «Pavlogradskaia». Zbahachennia korysnykh kopalyn, 52 (93), 145–154.
- Troshin, G. P., Shkop, A. A., Savel'ev, S. A., Ponomareva, N. G. (2015). The technology of processing and dewatering finely grained sludge from a coal cleaning plant. Water Supply and Sanitary Technique, 2, 74–78.
- Borts, M. A., Gupalo, Yu. P. (1972). Obezvozhivanie hvostov flotatsii ugleobogatitel'nyh fabrik. Мoscow: Nedra, 302.
- Vigdergauz, V. E., Gol’berg, G. Y. (2013). Mechanical destruction of floccules by shearing. Journal of Mining Science, 49 (2), 284–289. doi:10.1134/s1062739149020111
- Golberg, G. Yu., Lavrinenko, A. A. (2015). Formation, existence and breakup of flocculation structures. Mining Informational and Analytical Bulletin, 11, 47–54.
- Konovalova, T. A., Veksler, G. B., Lavrinenko, A. A., Golberg, G. Yu. (2014). Use of flocculants to improve environmental safety of water circuit of coal preparation plants. Izvestiya MGTU MAMI, 1(3(19)), 5–10.
- Il’in, S. O., Malkin, A. Y., Korobko, E. V., Novikova, Z. A., Zhuravskii, N. A. (2011). Rheological properties of high-concentration suspensions used for obtaining electrorheological media. Journal of Engineering Physics and Thermophysics, 84 (5), 1016–1025. doi:10.1007/s10891-011-0562-0
- Heller, H., Keren, R. (2002). Anionic Polyacrylamide Polymers Effect on Rheological Behavior of Sodium-Montmorillonite Suspensions. Soil Science Society of America Journal, 66 (1), 19–25. doi:10.2136/sssaj2002.0019
- Evmenova, G. L. (2008). Influence of deformation of a medium on flocculation of coal dispersions. Journal of Mining Science, 44 (3), 298–301. doi:10.1007/s10913-008-0020-3
- Kolodnikov, I. A., Kladiev, S. N., Krivopustov, S. I. (2010). Ochistka rastvorov uransoderzhashchih soedinenii ot mehanicheskih primesei metodom tsentrifugirovaniia. Bulletin of the Tomsk Polytechnic University, 2, 50–54
- Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal Of Enterprise Technologies, 6(10(84)), 35–40. doi:10.15587/1729-4061.2016.86085
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Андрей Александрович Шкоп, Моисей Абрамович Цейтлин, Алексей Валерьевич Шестопалов, Валентина Федоровна Райко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.