Effect of surface rolling on mechanical properties of Ti–Al system alloy

Authors

  • Olha Berdova-Bushura National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7741-1663

DOI:

https://doi.org/10.15587/2312-8372.2017.99894

Keywords:

roller burnishing, intermetallic alloys, Ti–Al alloys, fatigue cracks

Abstract

Taking into account the problem of modern aircraft engine building, new materials are being actively introduced to increase the service and reliability of products while reducing their material consumption. Namely, nickel alloys are replaced by lighter intermetallic alloys of the Ti–Al system, which is the object of the research. However, the use of a new class of alloys is complicated because of the high demands placed on these materials. Consequently, the intermetallic alloys used in the critical components of the aircraft must be not only strong, but super-strong.

To solve the problem of increasing the level of strength, it is suggested to use the roller burnishing, which consists in the fact that the rollers are pressed against the surface of the processed material, which leads to plastic deformation in the surface zone. As a result of deformation, changes in the structure of the surface layers of the material occur, which, in turn, leads to an increase in the mechanical characteristics.

Experiments have been carried out to strengthen the alloy of the Ti–Al system. The effect of roller burnishing on alloy Ti-45Al-5Nb (at %) is studied and it is established that after surface roller burnishing, the fatigue strength of alloy Ti-45Al-5Nb (at %) is increased by 4%, from 675 to 725 MPa. It is shown that surface roller burnishing reduces the maximum surface roughness by 0.4 μm (from 2.4 μm to 2.0 μm).

Author Biography

Olha Berdova-Bushura, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Postgraduate Student

Department of Physical and Chemical Bases of Technology Metals

References

  1. Dimiduk, D. M. (1999). Gamma titanium aluminide alloys – an assessment within the competition of aerospace structural materials. Materials Science and Engineering: A, 263 (2), 281–288. doi:10.1016/s0921-5093(98)01158-7
  2. In: Peters, M., Leyens, C. (2002). Titan und Titanlegierungen. Wiley, 528. doi:10.1002/9783527611089
  3. Appel, F., Paul, J. D. H., Oehring, M. (2011). Gamma Titanium Aluminide Alloys. Wiley, 745. doi:10.1002/9783527636204
  4. Imayev, V. M., Imayev, R. M., Oleneva, T. I. (2011). Current status of γ-TiAl intermetallic alloys investigations and prospects for the technology developments. Letters On Materials, 1, 25–31.
  5. Hoffmeister, J. (2009). Beschreibung des Eigenspannungsabbaus in kugelgestrahltem Inconel 718 bei thermischer, quasistatischer und zyklischer Beanspruchung. Karlsruher Institut für Technologie. Available: https://publikationen.bibliothek.kit.edu/1000014996/1336083
  6. Tehnologii shot peening i peen forming. Blastservis. Available: http://blastservis.ru/kat/kabiny-drobestruynye/kabiny/kabiny-naklep-iuprochnenie/tehnolo-gii-shot-peening-i-peen-forming8143/
  7. OSK-Kiefer GmbH Oberflächen- & Strahltechnik. Available: http://osk-kiefer.de/
  8. Lindemann, J., Kutzsche, A., Oehring, M., Appel, F. (2007). Influence of Mechanical Surface Treatments on the Fatigue Performance of the Gamma TiAl Alloy Ti-45Al-9Nb-0.2C. Materials Science Forum, 539-543, 1553–1558. doi:10.4028/www.scientific.net/msf.539-543.1553
  9. LLC «Transet». Available: http://www.transet-tool.com/
  10. Nochovnaia, N. A., Panin, P. V., Alekseev, E. B., Novak, A. V. (2015). Zakonomernosti formirovaniia strukturno-fazovogo sostoianiia splavov na osnoveorto- i gamma-aliuminidov titana v protsesse termomehanicheskoi obrabotki. Vesnik Rossiiskogo fonda fundamental'nyh issledovanii, 1. Available: http://www.rfbr.ru/rffi/ru/bulletin/o_1932892
  11. Kulykovskyi, R. A., Pakholka, S. N., Pavlenko, D. V. (2015). Prospects for industrial use titanium aluminide in aeroengine. Stroitel'stvo. Materialovedenie. Mashinostroenie. Seriia: Starodubovskie chteniia, 80, 369–372.
  12. Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B. (1997). Second International Symposium on Structural Intermetallics. Warrendale PA: Minerals Metals and Materials Society, 952.
  13. Hénaff, G., Gloanec, A.-L. (2005). Fatigue properties of TiAl alloys. Intermetallics, 13 (5), 543–558. doi:10.1016/j.intermet.2004.09.007
  14. Steinert, R., Lindemann, J., Berdova, O., Glavatskikh, M., Leyens, C. Surface effects on mechanical properties of materials for elevated temperature applications. Cottbus: Brandenburg University of Technology. Available: http://www.extremat.org/ib/site/documents/media/6cb655a4-c1e9-0d9a-25b4-6651c3edec1a.pdf/STEINERT.pdf
  15. Berg, A., Lindemann, J., Wagner, L. (1996). Elevated Temperature Fatigue Behavior of Timetal 1100. Fatigue ’96, 879–884. doi:10.1016/b978-008042268-8/50025-3
  16. Glavatskikh, M. (2011). Improvement of fatigue behavior of γ-TiAl-Alloys by means of mechanical surface treatment. Available: https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/%202207
  17. Lindemann, J., Glavatskikh, M., Leyens, C., Oehring, M., Appel, F. (2007). Influence of Mechanical Surface Treatments on the High Cycle Fatigue Performance of Gamma Titanium Aluminides. Ti-2007 Science and Technology. Vol. II. The Japan Institute of Metals, 1703.

Published

2017-03-30

How to Cite

Berdova-Bushura, O. (2017). Effect of surface rolling on mechanical properties of Ti–Al system alloy. Technology Audit and Production Reserves, 2(1(34), 21–24. https://doi.org/10.15587/2312-8372.2017.99894

Issue

Section

Materials Science: Original Research