Mycobiota in soil of different degree of degradation in perennial fruit plantations

Authors

DOI:

https://doi.org/10.33730/2310-4678.1.2023.278546

Keywords:

micromycetes, mycotoxines, biological safety, different types of soils, fruit plantations

Abstract

The number and species composition of micromycetes in different types of soils with different degree of degradation in perennial plantations of Malus Mill., Juglans regia L., Corylus avellana L., Prunus domestica L., Pyrus communis L., Rubus idaeus L., Fragaria vesca L. were analyzed. The research was carried out during 2012–2022 years in enterprises of different types of ownership located at the area of the Lviv, Volyn, Vinnytsia, Drinpropetrovsk, Kharkiv and Kherson Oblasts. The obtained results confirmed the differentiation in the number of micromycetes based on the type of soil and the degree of degradation. The smallest number and species composition of mycobiota were found in slightly and severely degraded soils. In total, among the studied samples of different types of soils, 109 species of micromycetes belonging to 25 genera of two divisions Zygomycota and Ascomycota were differentiated and identified, including 14 species (almost 13%) which are pathogenic or producers of mycotoxins and present biohazard. In most cases these species were found in moderately degraded, ordinary chernozem with a low content of humus and its frequency of occurrence was 29.5–48.5%. Among 13 pathogenic species of micromycetes, in moderately degraded ordinary chernozem with a low content of humus, four species non-typical for garden agnocenoses were detected: (A. flavus Link (frequence of occurence 32.5%), A. parasiticus Speare (34.8%), A. pseudotamari Bennet and Klich (37.3%), Claviceps purpurea (Fr.)Tul. (29.5%)). In slightly degraded sod-podzolic soil, three pathogenic species Botrytis cinerea Pers ex Fr, Paecilomyces lilacinum (Thom) Samson, P. verrucosum Dierckx var. Cyclopium (Westling) Samson, Stolk, Hadlok were identified, and their frequency of occurrence was 35.7–45.2%. In non-degraded soils, 93 species of micromycetes were found, including four pathogens (Botrytis cinerea Pers ex Fr, Paecilomyces lilacinum (Thom) Samson, P. verrucosum Dierckx var. cyclopium (Westling) Samson, Stolk, Hadlok, P. expansum Lk), and their frequency of occurrence was 27.5–40.7%.

Author Biographies

V. Oliferchuk, National Forestry University of Ukraine

Candidate of Biological Sciences, Docent

N. Kendzora, National Forestry University of Ukraine

Candidate of Agricultural Sciences

I. Shukel, National Forestry University of Ukraine

Candidate of Agricultural Sciences, Docent

O. Oleiniuk-Pukhniak, National Forestry University of Ukraine

Candidate of Agricultural Sciences, Docent

M. Samarska, National Forestry University of Ukraine

Postgraduate Student

References

Battilani, P., Toscano, P., Van der Fels-Klerks H., et al. (2016). Aflatoxin B 1 contamination of maize in Europe is increasing due to climate change. Sci Rep, 6, 24328. DOI: 10.1038/srep24328 [in English].

Medina, А., Gonzаlez-Jartіn, J.M., Sainz, М. (2017). Impact of global warming on mycotoxins. Current Opinion in Food Science, 18, 76–81. DOI: 10.1016/j.cofs.2017.11.009 [in English].

Smith, S.N. (2007). A review of ecological and habitat aspects of the genus Fusarium with special emphasis on soil-borne pathogenic forms. Plant Pathol. Bull., 16, 97–120 [in English].

Zheng, S.J., Garcia-Bastidas, F.A., Li, X. et al. (2018). New geographic information on the latest distribution of Fusarium oxysporum f. sp. cubense tropical Race 4 to the greater Mekong subregion. Front. Plant Sci, 9, 457 [in English].

Algutaimi, M., Washington, A., Kansas, A.M. et al. (2020). Mycotoxicity of Fusarium isolated from banana fruits: combination of phytopathological analyzes with toxin concentration. J. King Saud Univ. Sci., 32, 1482–1487 [in English].

Agriopoulou, S., Stamatelopoulou, E., Varzakas, T. (2020). Advances in occurrence, importance and control strategies of mycotoxins: prevention and detoxification in food. Food, 9, 137. DOI: 10.3390/foods9020137 [in English].

Paterson, R.R.M., Lima, N. (2010). Toxicology of mycotoxins. Galanin, 100, 31–63. DOI: 10.1007/978-3-7643-8338-1_2 [in English].

Summary of Final Report — MYCORED (2021). New Integrated Strategies to Reduce Global Mycotoxins in Food and Feed Chains. URL: https://cordis.europa.eu/project/id/222690/ reporting [in English].

Wu, F., Groopman, J.D., Pestka, J.J. (2014). Effects of food mycotoxins on public health. Annu. Rev. Food Sci. Technology, 5, 351–372. DOI: 10.1146/annurev-food-030713-092431 [in English].

Awuchi, C.G., Amagwula, I.O., Priya, P. et al. (2020). Aflatoxins in food and feed: a review of health implications, detection and control. Bull. Environment. Pharmacol. Life Sci, 9, 149–155 [in English].

Habschied, K., Krstanovic, V., Zdunic, Z. et al. (2021). Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel), 7 (5), 348. DOI: 10.3390/jof7050348 [in English].

Abdallah, H.F., Ameye, M., De Saeger, S., Audenaert, K., Haesaert, G., Njobeh, P.B, Stepman, F. (Eds.). (2018). In: Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach, Mycotoxins — Impact and Management Strategies. IntechOpen; London, UK. URL: https://www.intechopen.com/books/mycotoxins-impact-and-management-strategies/biological-control-of-mycotoxigenic-fungi-and-their-toxins-an-update-for-the-pre -harvest-approach [in English].

Claes, L., Romano, C., de Ruyck, C. et al. (2020). Mycotoxin exposure and human cancer risk: a systematic review of epidemiological of research. Comprehensive Reviews in Nutrition Science and Food Safety, 19 (4), 1449–1464. DOI: 10.1111/1541-4337.12567 [in English].

Perrone, G., Ferrara, M., Medina, A., Pascal, M., Magan, N. (2020). Toxigenic fungi and mycotoxins in a climate change scenario: ecology, genomics, distribution, risk prediction and prevention. Microorganisms, 8, 1496. DOI:: 10.3390/microorganisms8101496 [in English].

Mikhieiev, A.O. (2013). Mikotoksyny ta mikotoksykozy. Suchasnyi stan pytannia (ohliad) [Mycotoxins and mycotoxicosis. The current state of the issue (review)]. Pivdennoukrainskyi medychnyi naukovyi zhurnal — South Ukrainian medical scientific journal, 1, 111–113 [in Ukrainian].

Perrone, G., Susca, A., Cozzi, G. et al. (2007). Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol, 59, 53–66. DOI: 10.3114/sim.2007.59.07 [in English].

Navale, V., Vamkudoth, K.R., Ajmera, S., Dhuri, V. (2021). Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep, 8, 1008–1030. DOI: 10.1016/j.toxrep.2021.04.013 [in English].

Umesha, S., Manukumar, H.M.G., Chandrasekhar, B. et al. (2017). Aflatoxins and foodborne pathogens: effects of biologically active aflatoxins and strategies for their control. J. Sci. Food Agric, 97, 1698–1707. DOI: 10.1002/jsfa.8144 [in English].

Klich, M.A. (2002). Biogeography of Aspergillus species in soil and litter. Mycology, 94, 21–27. DOI: 10.1080/15572536.2003.11833245 [in English].

Koszegi, T., Poor, M. (2016). Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel), 8 (4), 111. DOI: 10.3390/toxins8040111 [in English].

Kooprasertying, P., Maneeboon, T., Hongprayoon, R., Mahakarnchanakul, W. (2016). Assessment of aflatoxin exposure in Thai peanut consumption. Cogent Food & Agriculture, 2, 1204683. DOI: 10.1080/23311932.2016.1204683 [in English].

Lovekor, I., Var, I. (2017). The control of aflatoxin contamination of peanuts during harvest, drying, prestorage and storage periods: a new approach. In book: Aflatoxin-Control, Analysis, Detection and Health Risks. InTech, 45–65. DOI: 10.5772/intechopen.68675

Krska, R., Nahrer, K., Richard, J.L. et al. (2012). Guide to Mycotoxins featuring Mycotoxin Risk Management in Animal Production. BIOMIN edition [in English].

Ostry, V., Malir, F., Ruprich, J. (2013). Producers and important dietary sources of ochratoxin A and citrinin. Toxins (Basel), 5 (9), 1574–1586. DOI: 10.3390/toxins5091574 [in English].

Wang, Y., Wang, L., Liu, F. et al. (2016). Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins (Basel), 8 (3), 83. DOI: 10.3390/toxins8030083 [in English].

Fernandez-Cruz, M.L., Mancilla, M.L., Tadeo, J.L. (2010). Mycotoxins in fruits and their processing products: analysis, occurrence and health consequences. Journal of Prospective Research, 1 (2), 113–122. DOI: 10.1016/j.jare.2010.03.002 [in English].

Perincherry, L., Lalak-Kanczugowska, J., Stępien, Ł. (2019). Fusarium-Produced Mycotoxins in PlantPathogen Interactions. Toxins (Basel), 11 (11), 664. DOI: 0.3390/toxins11110664 [in English].

Ekwomadu, T.I., Akinola, S.A., Mwanza, M. (2021). Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int J Environ Res Public Health, 18 (22), 11741. DOI: 10.3390/ijerph182211741 [in English].

Yazar, S., Omurtag, G.Z. (2008). Fumonisins, trichothecenes and zearalenone in cereals. International J. Mol. Sci., 9, 2062–2090. DOI: 10.3390/ijms9112062 [in English].

Klyuchkovskyi, A.M. (2019). Fungal and mycotoxin problems in nut production. Current Opinion in Food Science, 29, 56–63. DOI: 10.1016/j.cofs.2019.07.009 [in English].

Wild, C.P., Gong, Y.Y. (2010). Mycotoxins and human disease: a largely ignored global health problem. Carcinogenesis, 31, 71–82. DOI: 10.1093/carcin/bgp264 [in English].

Thrane, U., Adler, A., Clasen, P.-E. et al. (2004). Diversity of metabolite production by Fusarium langsethiae, Fusarium poae and Fusarium sporotrichioides. International J. Food Microbiol., 95, 257–266. DOI: 10.1016/j.ijfoodmicro.2003.12.005 [in English].

Rocha, O., Ansari, K., Dukhan, F.M. (2005). Effects of trichothescene mycotoxins on eukaryotic cells: a review. Food Supplement. Contam, 22, 369–378. DOI: 10.1080/02652030500058403 [in English].

Arunachalam, C., Doohan, F.M. (2013). Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol. Lett, 217, 149–158. DOI: 10.1016/j.toxlet.2012.12.003 [in English].

Foroud, N.A., Baines, D., Gagkaeva, T.Y. et al. (2019). Trichothecenes in Cereal Grains — An Update. Toxins (Basel), 11 (11), 634. DOI: 10.3390/toxins11110634 [in English].

Zhang, G.L., Feng, Y.L., Song, J.L., Zhou, X.S. (2018). Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals' Granulosa Cells. Front Genet, 9, 667. DOI: 10.3389/fgene.2018.00667 [in English].

Eshetu, E., Adugna, H., Gebretensay, A. (2016). An Overview on Major Mycotoxin in Animal: Its Public Health Implication, Economic Impact and Control Strategies. Journal of Health, Medicine and Nursing, 25, 64–73 [in English].

Lee, H.B., Patriarca, A., Magan, N. (2015). Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology, 43 (2), 93–106. DOI: 10.5941/MYCO.2015.43.2.93 [in English].

Freire, F.D.C.O., da Rocha, M.E.B. (2016). Impact of Mycotoxins on Human Health. In: Mérillon, J.M., Ramawat, K. (Eds.) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. DOI: 10.1007/978-3-319-19456-1_21-1 [in English].

Meena, M., Samal, S.(2019). Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol Rep, 6, 745–758. DOI: 10.1016/j.toxrep.2019.06.021 [in English].

Thomma, B.P.H.J. (2003). Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathol, 4 (4), 225–236 [in English].

Yakist gruntu. Vidbyrannia prob. Chastyna 6. Nastanovy z vidbyrannia, obroblennia ta zberihannia gruntu v aerobnykh umovakh dlia laboratornoho otsiniuvannia mikrobiolohichnykh protsesiv, biomasy ta riznomanittia [Soil quality. Sampling Part 6: Guidance on the collection, handling and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory]. (2015). DSTU ISO 10381-6:2015 (ISO 10381-6:2009, IDT). Natsionalnyi standart Ukrainy [in Ukrainian].

Volkohon, V.V., Nadkernychna, O.V., Tokmakova, L.M. (2010). Eksperymentalna gruntova mikrobiolohiia: monohrafiia [Experimental soil microbiology: monograph]. Kyiv: Ahrarna nauka [in Ukrainian].

Bilay, V.I., Ellanskaya, I.A., Kirilenko, T.S. (1984). Mikromitsety pochv [Micromycetes of soils]. Kyiv: Naukova dumka [in Russian].

Bilay, V.I., Koval, E.Z. (1988). Aspergilly [Aspergillus]. Kyiv: Naukova dumka [in Russian].

Bilay, V.I. (1977). Fuzarii [Fusari]. Kyiv: Naukova dumka [in Russian].

Ryabova, N., Tupolskikh, T., Serdyuk, V., Gordeeva, N. (2021). Analysis of infection with fungi of the genus Fusarium seed and vegetative organs of crops. E3S Web of Conferences, 273, 01019. DOI: 10.1051/e3sconf/202127301019 [in English].

Published

2023-02-14

Issue

Section

Articles