Dynamics of 137Cs accumulation in fish from Kyiv and Kaniv reservoirs
DOI:
https://doi.org/10.33730/2310-4678.3.2024.314919Keywords:
peaceful and predatory fish, modeling, long-term dynamicsAbstract
The aim of this study was to determine the temporal parameters of the dynamics of 137Cs specific activity in the bodies of fish in the Kyiv and Kaniv reservoirs over a 35-year period following the Chernobyl Nuclear Power Plant accident. Parameters characterizing the dynamics of 137Cs content in peaceful (Rutilus rutilus, Scardinius erythrophthalmus, Bliсssа bjoerkna, Abramis brama, Сarassius gibelio, Pelecus cultratus) and predatory fish (Aspius aspius, Esox lucius, Stizostedion lucioperca, Perca fluviatilis) were determined based on data on the specific activity of 137Cs in composite samples collected in 1986–(2020)2021 at various locations in the Kyiv and Kaniv reservoirs. For peaceful and predatory fish of the Kyiv and Kaniv reservoirs, three and two respective time intervals were identified, characterized by different intensities of 137Cs content reduction in the organisms. During 1986–1991, the specific activity of 137Cs in peaceful fish of the Kyiv reservoir decreased by an average of 2 times over 1.9 years, 1991–2002 — by 4.6 years, 2002–2020 — by 16 years. The half-life period of 137Cs content reduction in predatory fish for the period 1988–1993 was 3.4 years, 1993–2002 — 4.3 years, 2002–2020 — 8 years. From 1986(1987)–2004, the specific activity of 137Cs in peaceful and predatory fish in the Kaniv reservoir decreased by 2 times in approximately 5.6 years. During 2004–2021, the half-life period of radionuclide content reduction in the organisms of peaceful fish averaged 16 years and predatory fish — 10.3 years. Over time, the half-life period of 137Cs specific activity in fish of the Kyiv and Kaniv reservoirs increases, explained by the slowing down of the rate of decrease in volumetric activity of 137Cs in the water of the Dnipro and Prypiat rivers. The determined parameters of the model describing the dynamics of 137Cs specific activity can be used for predictive assessments of 137Cs content in commercially important fish species in the event of accidental influx of radionuclides into the ecosystems of large plain reservoirs.
References
Sanson, U., Voitsekhovych, O. (1996). Modeliuvannia i vyvchennia mekhanizmiv perenosu radioaktyvnykh rechovyn z nazemnykh ekosystem v vodni obiekty zony vplyvu Chornobylskoi avarii [Modeling and study of the mechanisms of transfer of radioactive substances from terrestrial ecosystems to water bodies in the zone of influence of the Chernobyl accident]. Chornobyl: Chornobyl-interinform [in Ukrainian].
Kuzmenko, M.I., Hudkov, D.I., Kirieiev, S.I. et al. (2010). Tekhnohenni radionuklidy u prisnovodnykh ekosystemakh [Technogenic radionuclides in freshwater ecosystems]. K.: Nauk. dumka [in Ukrainian].
Volkova, O.M. (2008). Tekhnohenni radionuklidy u hidrobiontakh vodoim riznoho typu [Technogenic radionuclides in hydrobionts with water of various types]. Doctor’s thesis. Kiyv [in Ukrainian].
Volkova, O.M., Beliaiev, V.V., Pryshliak, S.P., Hudkov, D.I., Kahlian, O.Ye., Skyba, V.V. (2023). Tekhnohenni radionuklidy u hidrobiontakh vodoim pivnochi Ukrainy [Technogenic radionuclides in hydrobionts of reservoirs in Northern Ukraine]. Hidrobiolohichnyi zhurnal — Hydrobiological journal, 59 (6), 100–119 [in Ukrainian].
Zarubin, O.L., Zarubina, N.E., Hudkov, D.I. et al. (2013). Pytoma aktyvnist 137Cs u ryb Ukrainy. Suchasnyi stan [Specific activity of 137Cs in fish of Ukraine. Current state]. Yaderna fizyka ta enerhetyka — Nuclear physics and energy, 14, 2, 177–182 [in Ukrainian].
Zarubin, O.L., Laktionov, V.A., Moshna, B.O. et al. (2011). Technogenic radionuclides in freshwater fishes of Ukraine after the accident at the Chernobyl nuclear power plant. Nuclear Physics and Atomic Energy, 12, 2, 192–197 [in English].
Volkova, O.M., Beliaiev, V.V., Parkhomenko, O.O., Pryshliak, S.P., Nikitiuk, K.O. (2011). Radioekolohichni naslidky porushennia rezhymu ekspluatatsii Kyivskoi HES u 2010 r. [Radio-ecological consequences of violation of the operating regime of the Kyiv HPP in 2010]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu im. Volodymyra Hnatiuka. Seriia: Biolohiia — Scientific Notes of Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 2 (47), 62–65 [in Ukrainian].
Kuzmenko, M.I., Romanenko, V.D., Derevets, V.V. et al. (2001). Radionuklidy u vodnykh ekosystemakh Ukrainy [Radionuclides in water ecosystems of Ukraine]. K.: Chornobylinterinform [in Ukrainian].
Derzhavni hihiienichni normatyvy. Dopustymi rivni vmistu radionuklidiv 137Cs i 90Sr u produktakh kharchuvannia ta pytnii vodi (DR-2006) [State hygienic standards. Permissible levels of radionuclides 137Cs and 90Sr in food and drinking water]. (2006). Kyiv [in Ukrainian].
rokiv Chornobylskoi katastrofy. Bezpeka maibutnoho: Natsionalna dopovid Ukrainy [25 years of the Chernobyl disaster. Security of the future: National report of Ukraine]. (2011). K.: KIM [in Ukrainian].
Konoplev, A. et al. (2020). Behavior of Radionuclides in the Environment II. Chernobyl. Springer Singapore. DOI: https://doi.org/10.1007/978-981-15-3568-0 [in English].
Voitsekhovycha, O.V. (Ed.). (1997). Radioheoekolohiia vodnykh obiektiv zony vplyvu avarii na ChAES [Radiogeoecology of water bodies in the zone of influence of the accident at the ChNPP]. Vol. 1. K.: Chernobylinterinform [in Ukrainian].
Pryshliak, S.P. (2019). Radionuklidne zabrudnennia vyshchykh vodianykh roslyn ta rol helofitiv u mihratsii 137Cs u prisnovodnykh vodoimakh [Radionuclide contamination of higher aquatic plants and the role of helophytes in the migration of 137Cs in freshwater bodies]. Candidate’sthesis. Kiev [in Ukrainian].
Beliayev, V.V., Volkova, Ye.N. (2013). Mechanisms of forming of seasonal variations of 90Sr and 137Cs content in the freshwater fishes. Hydrobiological journal, 49, 5, 81–89 [in English].
Belyaev, V.V., Volkova, O.M., Gudkov, D.I., Prishlyak, S.P., Skyba, V.V. (2023). Radiation dose reconstruction for higher aquatic plants and fish in Glyboke Lake during the early phase of the Chernobyl accident. Journal of Environmental Radioactivity, 107169 (Q2). DOI: 10.1016/j.jenvrad.2023.107169 [in English].
Kahlian O.Ye. et al. (2021). Dynamika pytomoi aktyvnosti 90Sr i 137Cs u predstavnykiv ikhtiofauny vodoim chornobylskoi zony vidchuzhennia [Dynamics of specific activity of 90Sr and 137Cs in representatives of the ichthyofauna of reservoirs of the Chernobyl exclusion zone]. Radiobiolohiia ta radioekolohiia — Radiobiology and radioecology, 22, 1, 62–73. DOI: https://doi.org/10.15407/jnpae2021.01.062 [in Ukrainian].
Romaneko, V.D., Kuzmenko, M.I., Yevtushenko, N.Yu. et al. (1992). Radioaktyvne i khimichne zabrudnennia Dnipra i yoho vodoskhovyshch pislia avarii na Chornobylskii AES [Radioactive and chemical pollution of the Dnipro and its reservoirs after the accident at the Chernobyl NPP]. K.: Naukova dumka [in Ukrainian].
Skyba, V.V., Prysiazhniuk, N.M., Volkova, O.M., Beliaiev, V.V., Pryshliak, S.P. (2021). Bahatorichna dynamika formuvannia radionuklidnoho zabrudnennia promyslovoi ikhtiofauny Kanivskoho vodoskhovyshcha. [Long-term dynamics of formation of radionuclide contamination of industrial ichthyofauna of the Kaniv Reservoir]. Zbirnyk naukovykh prats “Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva” — Collection of scientific papers ‘Technology of production and processing of livestock products’, 1, 108–115 [in Ukrainian].
Beliaiev, V.V., Volkova, O.M. (2012). Rol chasovoho faktoru u vyznachenni shvydkosti vyvedennia 90Sr ta 137Cs u prisnovodnykh rybakh [The role of the time factor in determining the excretion rate of 90Sr and 137Cs in freshwater fish]. Problemy bioheokhimii ta heokhimichnoi ekolohii — Problems of biogeochemistry and geochemical ecology, 2 (19), 51–56 [in Ukrainian].
Kashparova, E.V., Teien, H.Kh., Levchuk, S.E. et al. (2019). Dynamika vyvedennia 137Ss z orhanizmu sribnoho karasia (Sarassius gibelio) pry riznii temperaturi vody [Dynamics of removal of 137Сs from the body of silver crucian carp (Carassius gibelio) at different water temperatures]. Yaderna fizyka ta enerhetyka — Nuclear physics and energy, 20, 411–419 [in Ukrainian].
Beliaiev, V.V., Volkova, O.M., Pryshliak, S.P. (2015). Modeliuvannia dynamiky formuvannia radioaktyvnosti vodnykh Roslyn [Modeling of the dynamics of the formation of radioactivity of aquatic plants]. Yaderna enerhetyka ta dovkillia — Nuclear energy and the environment, 1 (5), 44–49 [in Ukrainian].
Dziuba, N.N., Todosiienko, S.V. (2002). Validatsiia matematychnykh modelei mihratsii radiotseziiu v ekosystemi Kyivskoho vodoskhovyshcha [Validation of mathematical models of radiocesium migration in the ecosystem of the Kyiv Reservoir]. Naukovi pratsi UkrNDHMI — Scientific papers of the Ukrainian research hydrometeorological institute, 250, 298–309 [in Ukrainian].
Nasvit, O.I., Buianov, N.I., Kuzmenko, M.I. (1986). Vyznachennia kinetychnykh parametriv protsesu nakopychennia radionuklidiv komponentamy ekosystem za rivnovazhnymy znachenniamy koefitsiientiv kontsentruvannia [Determination of kinetic parameters of the process of accumulation of radionuclides by components of ecosystems according to equilibrium values of concentration coefficients]. Hidrobiolohichnyi zhurnal — Hydrobiological journal, 22, 5, 97–100 [in Ukrainian].
Downloads
Published
Issue
Section
License
- The authors reserve the right to authorship their work and pass the journal the right to publish this work under a Creative Commons Attribution License license, which allows other persons to freely distribute the published work with the obligatory The authors of the original work and the first publication of this magazine.
- The authors have the right to make independent additional agreements on the nonexclusive dissemination of the work in the form in which it was published by this magazine (for example, to post work in the company's electronic storage or to publish as a monograph) , subject to the first publication of the link to this journal.
- Journal policy allows and encourages the placement of authors on the Internet (for example, in the repositories of institutions or on personal websites) manuscript work as to the presentation of this manuscript to the editorial board and during its editorial processing, as it contributes to The productive scientific discussion and positively affects the efficiency and dynamics of citation published work (see The Effect of Open Access).