Innovations of precision agriculture in reducing environmental risks in agroecosystems of Ukraine

Authors

DOI:

https://doi.org/10.33730/2310-4678.3.2024.314928

Keywords:

agriculture, farming, agroecosystem, environmental risk minimization, climate change, environmental safety

Abstract

The article analyzes the role of an innovative method of management — precision agriculture, in reducing the ecological burden on agroecosystems of Ukraine and in optimizing the use of natural resources. The high potential of precision agriculture for increasing the efficiency of agricultural production and ensuring the sustainable development of agroecosystems is shown. The global best practices of using innovative technologies of precision agriculture, which proved their effectiveness, were analyzed. The need and relevance of developing a mechanism for reducing environmental risks in agroecosystems of Ukraine using precision farming technologies was determined. A mechanism for reducing environmental risks in agroecosystems is developed, which outlines the management of agricultural processes using innovative technologies as a tool for optimizing resource use, reducing negative environmental impacts, and increasing the resilience of agroecosystems to climate change. It is noted that the implementation of precision agriculture technologies significantly reduces the environmental risks associated with traditional farming methods. Monitoring and diagnostics of agroecosystems within the framework of precision agriculture improve resource efficiency, reduce the negative impact on the natural environment, and enhance the sustainability of agricultural production. The optimization of agrochemicals, water, and other resources through modern technologies contributes to the conservation of natural resources and the improvement of agroecosystems ecological stability.

References

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529 (7584), 84–87. DOI: https://doi.org/10.1038/nature16467 [in English].

Balasundram, S.K., Shamshiri, R.R., Sridhara, S., & Rizan, N. (2023). The role of digital agriculture in mitigating climate change and ensuring food security: An overview. Sustainability, 15 (6), 5325. DOI: https://doi.org/10.3390/su15065325 [in English].

FAO (2015). Status of the World’s Soil Resources (SWSR) — Main Report. Food and Agriculture Organization of the United Nations. URL: http://www.fao.org/3/i5199e/I5199E.pdf [in English].

Bhakta, I., Phadikar, S., & Majumder, K. (2019). State of the art technologies in precision agriculture: a systematic review. Journal of the Science of Food and Agriculture, 99 (11), 4878–4888. DOI: https://doi.org/10.1002/jsfa.9693 [in English].

Méndez-Vázquez, L.J., Lira-Noriega, A., Lasa-Covarrubias, R., & Cerdeira-Estrada, S. (2019). Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Computers and Electronics in Agriculture, 167, 105101. DOI: https://doi.org/10.1016/j.compag.2019.105101 [in English].

Hrynevych, O., Blanco Canto, M., & Jiménez García, M. (2022). Tendencies of precision agriculture in Ukraine: Disruptive smart farming tools as cooperation drivers. Agriculture, 12 (5), 698. DOI: https://doi.org/10.3390/agriculture12050698 [in English].

Pasichnyk, N., Opryshko, O. (2021). Metodychni pidkhody shchodo identyfikatsii roslyn na znimkakh vysokoho rozriznennia za multyspektralnoho monitorynhu za dopomohoiu BPLA [Methodical approaches to the identification of plants on high-resolution images under multispectral monitoring using a UAV]. Plant & Soil Science, 12 (2), 47. DOI: https://doi.org/10.31548/agr2021.02.047 [in Ukrainian].

Lishchuk, A., Parfenyk, A., Furdychko, O., Boroday, V., Beznosko, I., Drebot, O., & Karachinska, N. (2024). Ecotoxicological hazard of pesticide use in traditional agricultural technologies. Journal of Ecological Engineering, 25 (2), 274–289. DOI: https://doi.org/10.12911/22998993/177275 [in English].

Lishchuk, A., Parfenyk, A., Horodyska, І., Boroday, V., Ternovyi, Y., & Tymoshenko, L. (2023). Environmental Risks of the Pesticide Use in Agrocenoses and their Management. Journal of Ecological Engineering, 24 (3), 199–212. DOI: https://doi.org/10.12911/22998993/158537 [in English].

Lishchuk, A.M., Parfenyuk, A.I., Horodyska, I.M., Borodai, V.V., & Draga, M.V. (2022). Osnovni vazheli upravlinnia ekolohichnymy ryzykamy v ahrotsenozakh [The main levers of environmental risk management in agrocenoses]. Ahroekolohichnyi zhurnal — Agroecological journal, 2, 74–85. DOI: https://doi.org/10.33730/2077-4893.2.2022.263320 [in Ukrainian].

Basso, B., & Antle, J. (2020). Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 3 (4), 254–256. DOI: https://doi.org/10.1038/s41893-020-0510-0 [in English].

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. DOI: https://doi.org/10.1017/9781009157896 [in English].

Karunathilake, E.M.B.M., Le, A.T., Heo, S., Chung, Y.S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13 (8), 1593. DOI: https://doi.org/10.3390/agriculture13081593 [in English].

Zaman, Q.U. (2023). Precision agriculture technology: A pathway toward sustainable agriculture. Chapter 1. In: Precision Agriculture Academic Press. P. 1–17. DOI: https://doi.org/10.1016/B978-0-443-18953-1.00013-1

European Commission (2020). Farm to Fork Strategy. URL: https://ec.europa.eu/food/farm2fork_en [in English].

Lakhiar, I.A., Yan, H., Zhang, C., Wang, G. et al. (2024). A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture, 14 (7), 1141. DOI: 10.3390/agriculture14071141 [in English].

Bwambale, E., Abagale, F.K., & Anornu, G.K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agricultural Water Management, 260, 107324. DOI: https://doi.org/10.1016/j.agwat.2021.107324 [in English].

Laslo, O.O. (2011). Vprovadzhennia tekhnolohii tochnoho zemlerobstva v Ukraini [Implementation of precision farming technologies in Ukraine]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii — Bulletin of the Poltava State Agrarian Academy, 1, 49–51. URL: https://dspace.pdau.edu.ua/server/api/core/bitstreams/b2607ebe-1dc1-4b82-9e48-22b71d72cacd/content [in Ukrainian].

Higgins, S., Schellberg, J., & Bailey, J.S. (2019). Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology. European Journal of Agronomy, 106, 67–74. DOI: https://doi.org/10.1016/j.eja.2019.04.001 [in English].

Vyshnevska, O.M., & Harkusha, Yu.V. (2013). Informatsiini tekhnolohii zemlerobstva u kontseptsii staloho rozvytku ahrarnoho sektora [Information technologies of agriculture in the concept of sustainable development of the agricultural sector]. Investytsii: praktyka ta dosvid — Investments: Practice and Experience, 19, 32–36. URL: http://www.investplan.com.ua/pdf/19_2013/9.pdf [in Ukrainian].

Baylis, A. (2017). Advances in precision farming technologies for crop protection. Outlooks on Pest Management, 28 (4), 158–161. DOI: https://doi.org/10.1564/v28_aug_04 [in English].

Harafonova, O., & Marhasova, V. (2022). Perspektyvy vprovadzhennya innovatsiynykh tekhnolohiy rozvytku ahropromyslovoho kompleksu Ukrayiny [Prospects for the introduction of innovative technologies for the development of the agro-industrial complex of Ukraine]. Socio-economic relations in the digital society, 3 (45), 19–28. DOI: https://doi.org/10.55643/ser.3.45.2022.475 [in Ukrainian].

Published

2024-08-22

Issue

Section

Articles