Ecological monitoring of the development of drought processes in Zaporizhia region

Authors

DOI:

https://doi.org/10.33730/2310-4678.4.2024.319400

Keywords:

desertification, Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), remote sensing, degradation, multispectral satellite imagery

Abstract

Drought ecological monitoring is a critical component of natural resource management and climate change response systems. It encompasses the assessment, analysis, and forecasting of drought conditions using modern technologies such as remote sensing, satellite imagery, geographic information systems (GIS), and mathematical modeling. The primary objectives of drought monitoring are the timely identification of risks, minimization of impacts on agriculture, water resources, and ecosystems, and the development of strategies for climate change adaptation. Monitoring aridity processes significantly influences decision-making in land use, agriculture, water resource management, and the planning of measures for climate adaptation. The study demonstrates the potential of using remote sensing data for detecting drought processes. For the analysis of satellite images, the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) were utilized. An analysis of Sentinel-2 satellite images revealed that in the middle of the 2024 growing season, 15% (223 hectares) had an NDVI below 0.2, indicating issues with plant development. The analysis of NDWI data indicates a critical moisture level (-0.2) over a significant area of the research plots. Thus, against the backdrop of the water crisis induced by the Russian Federation and global climate change, drought processes are actively developing in the Zaporizhzhia region.

References

Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J., & Reed, B.C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens., 45, 16–46. DOI: 10.2747/1548-1603.45.1.16. [in English].

Chen, D., Huang, J., & Jackson, T.J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ., 98, 225–236. DOI: 10.1016/j.rse.2005.07.008 [in English].

Datsenko, L.M., Hanchuk, M.M., Chebanova, Yu.V., Kolomiets, S.M., & Lezhenkin, I.O. (2021). The role of land management and cartographic works in the implementation of ecological certification of agricultural landscapes. International Conference of Young Professionals “Geoterrace-2021”. (Oct. 2021) (p. 1–5). DOI: https://doi.org/10.3997/2214-4609.20215K3040 [in English].

Dwivedi, R.S., Kumar, A.B., & Tewari, K.N. (1997). The utility of multi-sensor data for mapping eroded lands. International Journal of Remote Sensing, 18 (11), 2303–2318 [in English].

Gu, Y., Hunt, E., Wardlow, B.D., Basara, J.B., Brown J.F., & Verdin, J.P. (2008). Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett., 35 (22). DOI: 10.1029/2008GL035772. [in English].

Gu, Y., Brown, J.F., Verdin, J.P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett., 34 (L06407): 6. DOI: 10.1029/2006GL029127. [in English].

Jackson, J.T., Chen, D., Cosh, M.H., Li, F., Anderson, M., Walthall, C., Doriaswamy, P., & Hunt, E.R. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ., 92 (4), 475– 482. DOI: 10.1016/j.rse.2003.10.021 [in English].

Latz, K. et al. (1984). Characteristic variations in spectral reflectance of selected eroded alfisols. Soil Science Society of America Journal, 48 (5), 1130–1134 [in English].

McFeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17 (7), 1425–1432. DOI: http://dx.doi.org/10.1080/01431169608948714 [in English].

Vozniuk, N., Skyba, V., Likho, O., Sobko, Z., & Klymenko, T. (2023). Forecasting the adaptability of heat-loving crops to climate change in Ukraine. Scientific Horizons, 26 (2), 87–102. DOI: 10.48077/scihor.26(2).2023.87-102 [in English].

Pelletier, R.E., & Griffin, R.H. (1985). Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices. Proceedings of IGARSS’85. IEEE. (p. 40–45). University of Massachusetts. Amherst. Massachusetts [in English].

Rouse, J.W.Jr., Haas, H.R., Deering, D.W., Schell, J.A., & Harlan, J.C. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Type III final report. NASA Goddard Space Flight Cent., Greenbelt, Md. [in English].

Klimov, S., & Kozishkurt, S., (2023). Dystantsiine zonduvannia Zemli dlia otsinky ryzykiv vtraty rodiuchosti sukhostepovykh gruntiv pry vodnii kryzi [Remote sensing of the Earth to assess the risks of loss of fertility of dry steppe soils during a water crisis].Modeliuvannia, keruvannia ta informatsiini tekhnolohii: materialy VI Mizhnarodnoi naukovopraktychnoi konferentsii — Modeling, Control and Information Technologies: Proceedings of International scientific and practical conference. (No. 6, p. 214–217). DOI: https://doi.org/10.31713/MCIT.2023.066 [in Ukrainian].

Romanchuk, I.F., Sakhatskyi, O.I., & Apostolov, O.A. (2018). Otsinka volohosti gruntu za dopomohoiu suputnykovykh znimkiv Sentinel-2 (na prykladi Baryshivskoho polihonu Kyivskoi oblasti). [The estimation of soil humidity by the satellite Sentinel-2 imageries (object of study is the Baryshivskyi district of the Kyiv region)]. Dopovidi Natsionalnoi akademii nauk Ukrainy — Reports of the National Academy of Sciences of Ukraine, 1, 60–66. DOI: https://doi.org/10.15407/dopovidi2018.01.060 [in Ukrainian].

Tarariko, O.H., Syrotenko, O.V., Ilienko T.V., & Kuchma T.L. (2019). Ahroekolohichnyi suputnykovyi monitorynh: monohrafiia [Agroecological satellite monitoring: monograph]. K.: Agrarian Science [in Ukrainian].

Furdychko, O.I. (Ed.), Tarariko, O.H., Syrotenko, O.V., Kuchma, T.L., & Ilienko, T.V. (2017). Ahroekolohichnyi monitorynh opusteliuvannia ta dehradatsii zemel [Aerospace monitoring of desertification and land degradation]. Kyiv [in Ukrainian].

Published

2024-11-14

Issue

Section

Articles