Relationship of climate changes with geomagnetic field. P. 3. Northern and Southern hemispheres


  • N. A. Kilifarska National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • V. G. Bakhmutov Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • G. V. Melnyk Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv, Ukraine



geomagnetic field, climate, mechanism of relation


Differences of relations between geomagnetic field and climate for Northern and Southern hemispheres considered earlier have been shown. They are connected, first of all, with the depth of penetration of the charged particles into the Earth’s atmosphere, modulated by geomagnetic field and their impact on the ozone balance near the tropopause. In the Northern hemisphere ozone formation in the lower stratosphere occurs during ionic-molecular autocatalitic cycle of ozone production, initiated by GCR, and in the Southern one — as a result of “self-reduction” of ozone initiated by solar energetic particles.  Explanation of the observed simultaneous warming in the Western Antarctica and the fall of temperature in the Central and Eastern Antarctica has also been presented.


Bakhmutov V. G., Martazinova V. F., Ivanova E. K., Mel’nik G. V., 2011. Changes in the main magnetic field and climate in the twentieth century. Dopovidi NAN Ukrayiny. Nauky pro Zemlyu (7), 90—94 (in Russian).

Bakhmutov V. G., Martazinova V. F., Kilifarska N. F., Mel’nyk G. V., Ivanova E. K., 2014. Geomagnetic field and climate variability. 1. Spatial-temporal distribution of geomagnetic field and climatic parameters during XX century. Geofizicheskiy zhurnal 36(1), 81—104 (in Russian).

Kilifarska N. A., Bakhmutov V. G., Mel’nyk G. V., 2015. Relation between geomagnetic field and climate variability. 2. Probable mechanism. Geofizicheskiy zhurnal 37(5), 66—92 (in Russian).

Martazinova V. F., Timofeyev V. E., Ivanova E. K., 2010. Modern regional climate of the Antarctic Peninsula and the Vernadsky Station. Ukrayins'kyy antarktychnyy zhurnal (9), 231—248 (in Russian).

Pudovkin M. I., Babushkin S. V., 1991. Influence of electromagnetic and corpuscular radiation of a solar flare on the intensity of zonal circulation of the atmosphere. Geomagnetizm i aeronomiya 31(3), 493—499 (in Russian).

Pudovkin M. I., Veretenenko S. V., 1992. Variations meridional atmospheric pressure profile during geomagnetic disturbance. Geomagnetizm i aeronomiya 32(1), 118—122 (in Russian).

Pudovkin M. I., Raspopov O. M., 1992. The mechanism of influence of solar activity on the state of the lower atmosphere and meteorological parameters. Geomagnetizm i aeronomiya 32(5), 1—22 (in Russian).

Brasseur G., Solomon S., 2005. Aeronomy of the middle stratosphere: chemistry and physics of the stratosphere and mesosphere. Dordrecht, Netherlands: Springer, 646 p. doi 10.1007/1-4020-3824-0.

de Petris G., 2003. Atmospherically relevant ion chemistry of ozone and its cation. Mass Spectrom. Rev. 22, 251—271. DOI: 10.1002/mas.10053.

Dickinson R. E., 1975. Solar variability and the lower atmosphere. Bull. Amer. Meteorol. Soc. 56, 1240—1248.

Evtushevsky O. M., Grytsai A. V., Klekociuk A. R., Milinevsky G. P., 2008. Total ozone and tropopause zonal asymmetry during the Antarctic spring. J. Geophys. Res. 113, D00B06. DOI:10.1029/2008jd009881.

Forster P. M., Shine K., 1997. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. 102 (D9), 10841—10855.

Gauss M., Myhre G., Isaksen I. S. A., Grewe V., Pitari G., Wild O., Collins W. J., Dentener F. J., Ellingsen K., Gohar L. K., Hauglustaine D. A., Iachetti D., Lamarque J.-F., Mancini E., Mickley L. J., Prather M. J., Pyle J. A., Sanderson M. G., Shine K. P., Stevenson D. S., Sudo K., Szopa S., Zeng G., 2006. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys. 6, 575—599.

Climate Change 2007. The Physical Science Basis. Cambridge University Press, 2007.

Jackman C. H., McPeters R. D., 2004. The Effect of Solar Proton Events on Ozone and Other Constituents, in Solar Variability and Its Effects on Climate. In: Solar Variability and Its Effect on Climate. Vol. 141. American Geophysical Union, P. 305—321. DOI: 10.1029/141GM21.

Jackman C. H., McPeters R. D., 1985. The response of ozone to solar proton events during solar cycle 21: A theoretical interpretation. J. Geophys. Res. 90(D5), 7955—7966. DOI:10.1029/JD090iD05p07955.

Kilifarska N. A., 2013. An autocatalytic cycle for ozone production in the lower stratosphere initiated by Galactic Cosmic rays. Compt. Rend. Acad. Bulg. Sci. 66 (2), 243—252.

Kilifarska N. A., 2015. Bi-decadal solar influence on climate, mediated by near tropopause ozone J. Atmos. Solar.-Terr. Phys. 136, 216—230.

Kilifarska N. A., 2012a. Mechanism of lower stratospheric ozone influence on climate. Int. Rev. Phys. 6(3), 279—289.

Kilifarska N. A., 2012b. Ozone as a mediator of galactic cosmic rays’ influence on climate. Sun and Geosphere 7(1), 97—102.

Kilifarska N. A., Bakhmutov V. G., Melnyk G. V., 2013a. Energetic particles influence on the southern Hemisphere ozone variability. Compt. Rend. Acad. Bulg. Sci. 66, 1613—1622.

Kilifarska N. A., Bakhmutov V. G., Melnyk G. V., 2013b. Geomagnetic influence on Antarctic Climate — Evidences and Mechanism. Int. Rev. Phys. 7(3), 242—252.

King J. W., 1974. Weather and Earth’s magnetic field. Nature 274, 131—134.

Kwok R., Comiso J. C., 2002. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 29, 14. DOI:10.1029/2002GL015415.

Leung P. T., 1989. Bethe stopping-power theory for heavy target atoms. Phys. Rev. A, 40 (9), 5417—5419.

Moisan M., Pelletier J., 2012. Individual motion of a charged particle in electric and magnetic fields. In: Physics of collisional plasmas. Springer, P. 101—202.

Ramanatan V., Callis L. B., Boucher R. E., 1976. Sensitivity of surface temperature and Atmospheric temperature to perturbations in the Stratospheric ozone and Nitrogen dioxide. J. Atmos. Sci. 33, 1092—1112.

Schneider D. P., Steig E., van Ommen T. D., Dixon D. A., Mayewski P., Jones J. M., Bitz C. M., 2006. Antarctic temperatures over the past two centuries from ice cores. Geophys. Res. Lett. 33, L16707. DOI:10.1029/2006GL027057.

Slanger T. G., Jusinski L. E., Black G., Gadd G. E., 1988. A new laboratory source of ozone and its atmospheric implications. Science 241, 945—950.

Spencer R. W., Braswell W. D., 1997. How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory. Bull. Amer. Meteor. Soc., 78, 1097—1106.

Steig E. J., Schneider D. P., Rutherford S. D., Mann M. E., Comiso J. C., Shindell D. T., 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459— 463. DOI:10.1038/nature07669.

Stuber N., Sausen R., Ponater M., 2001. Stratosphere adjusted radiative forcing calculations in a comprehensive climate model. Theor. Appl. Climatol. 68, 125—135.

Svensmark H., 1998. Influence of cosmic rays on Earth's climate. Phys. Rev. Lett. 81, 5027—5030.

Svensmark H., Friis-Christensen E., 1997. Variation of cosmic ray flux and global cloud coverage — a missing link in solar-climate relationships. J. Atmos. Solar.-Terr. Phys. 59, 1225—1232.

Thompson D. W. J., Solomon S., 2002. Interpretation of recent Southern Hemisphere climate change. Science 296, 895—899.

Tinsley B. A., 1996. Solar wind modulation of the global electric circuit and apparent effects on cloud microphysics, latent heat release, and tropospheric dynamics. J. Geomag. Geoelectr. 48(1), 165—175.

Velinov P. I. Y., Asenovski S., Kudela K., Lastovicka J., Mateev L., Mishev A., Tonev P., 2013a. Impact of cosmic rays and solar energetic particles on the earth's environment. J. Space Weather Space Clim. 3 (A14), 1—17.

Velinov P. I. Y., Asenovski S., Mateev L., 2013b. Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and low ionosphere with relation to characteristic energy intervals. Acta Geophys. 61(2), 494—509.

Vieira L. E. A., da Silva L. A., Guarnieri F. L., 2008. Are changes of the geomagnetic field intensity related to changes of the tropical Pacific sea-level pressure during the last 50 years? J. Geophys. Res. 113, A08226. DOI:10.1029/2008JA013052.

Wang W.-Ch., Pinto J. P., Yunk Y. L., 1980. Climatic effect due to the halogenated compound in the Earth atmosphere. Atmos. Sci. 37, 333—338.

Wang W.-Ch., Zhuang Y.-Ch., Bojkov R., 1993. Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere. Geophys. Res. Lett. 20 (15), 1567—1570.

Wirth V., 1993. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res. 98, 8873—8882.

Ziegler J. F., 1999. The stopping of energetic light ions in elemental matter. J. Appl. Phys. Rev. 85, 1249—1272.



How to Cite

Kilifarska, N. A., Bakhmutov, V. G., & Melnyk, G. V. (2016). Relationship of climate changes with geomagnetic field. P. 3. Northern and Southern hemispheres. Geofizicheskiy Zhurnal, 38(3), 52–71.