Spectral-temporal analysis of long-period climatic series, the core of the Greenland borehole as an example

Authors

  • T. E. Danova Odessa State Ecological University, Odessa, Ukraine
  • B. V. Perelygin Odessa State Ecological University, Odessa, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v38i3.2016.107783

Keywords:

the restored series of air temperature, spectral-temporal analysis, harmonics

Abstract

Spectral-temporal analysis of harmonics of restored series of air and temperature in the central part of Greenland has revealed two periods with the maximal values of energy of the spectrum. It has been shown that the least value harmonic behaves stably in time. All harmonics are characterized by the maximal values of energy during the periods of spasmodic variations of air temperature, the least values of energy are observed during the periods of small temperature disturbances.

References

Vasilchuk A. K., 2009. Palynology and chronology of ice wedges: Dr. geograph. sci. dis. Moscow, 362 p. (in Russian).

Velichko A. A., 1968. Main climatic border and stages of pleistocene. Izvestiya AN SSSR. Ser. geograf. (3), 5—17 (in Russian).

Velichko A. A., 1991. The Global changes of climate and reaction of landscape shell. Izvestiya AN SSSR. Ser. geograf. (5), 5—21 (in Russian).

Velichko A. A., Gribchenko Yu. N., Kurenkova E. I., 2003. Late paleolitic of persons populates the Russian plain. Nature (3), 52—60 (in Russian).

Velichko A. A., Yasamanov N. A., 1986. Modern and ancient climate. Izvestiya AN SSSR. Ser. geograf. (6), 5—15 (in Russian).

Glok N. I., Malinin V. N., 2011. Statistical analysis of steric fluctuations in the level of the oceans. Scientific notes of Russian State Hydrometeorological University. Scientific and technical journal (21), 126—137 (in Russian).

Danova T. E., 2011. Intercommunication of regional climatic indexes and dynamics of marine ice of arctic pool. Regionalnyye problemy 14(1), 42—47 (in Russian).

Danova T. E., Perelygin B. V., 2015. Application of vavelet-analysis for clarification of age of events of Heinrich. Geofizicheskiy zhurnal 37(1), 165—175 (in Russian).

Danova T. E. Perelygin B. V., 2013. Results of Fur'e-analysis of information of paleoreconstruction of temperature are in central part of Greenland. The Scientific messages of the Russian state hydrometeorological university. Science magazine. (32), 83—93 (in Russian).

Dolukhanov P. M., 2008. Evolution of the natural environment and early settling apart of man in North Eurasia. In: The way to the north: the Environment and the earliest inhabitants of the Arctic and Subarctic. Moscow: Publ. House RAS, P. 33—47 (in Russian).

Zalmanzon L. A., 1989. Transformation of Fur'e, Walsh, Haar and their application in a management, connection and other areas. Moscow: Science. 496 p. (in Russian).

Klyashtorin L. B., Lyubushin A. A., 2005. Cyclic climate change and fish. Moscow: VNIRO, 235 p. (in Russian).

Kotlyakov V. M., 2000. Global changes in four climatic cycles of glaciological data. Materialy glyatsiologicheskikh issledovaniy (is. 89), 106—111 (in Russian).

Kotyuk A. F., Tsvetkov E. I., 1970. Spectral and correlation analysis of nonstationary casual transients. Moscow: Publishing House of committee of standards, measures and measuring devices at Council of Ministers of the USSR, 103 p. (in Russian).

Lazukov G. I., Gvozdover M. D., Roginskiy Ya. Ya., 1981. Nature and ancient man. Moscow: Mysl', 223 p. (in Russian).

Mongayt A. L., 1973. Archaeology of Western Evropy. Stone age. Moscow: Nauka, 1973. 103 p. (in Russian).

Monin A. S., 1982. Introduction to the theory of climate. Leningrad: Gidrometeoizdat, 246 p. (in Russian).

Rudyaev F. I., 1990. Effect of the anomalous Gravity Field the Circulators of the atmosphere system. Doklady AN 357(6), 823—825 (in Russian).

Sergiyenko A. B., 2002. Digital signal processing. St. Petersburg: Piter, 2002. 608 p. (in Russian).

Khotinskiy N. A., 1987. Holocene Northern Eurasia. Moscow: Nauka, 198 p. (in Russian).

Shvartsman Yu. G., Bolotov I. N., 2008. Spatio-temporal heterogeneity of the taiga bioma in area of the pleistocene mainland freezings. Ekaterinburg: Publ. Ural Branch of the RAS, 263 p. (in Russian).

Baliunas S., Frick P., Sokoloff D., Soon W., 1997. Time scales and trends in the Central England Temperature data (1659—1990): a wavelet analysis. Geophys. Res. Lett. 24(11), 1351—1354.

Bond G., Kromer B., Beer J., Muscheler R., Evans M. N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I., Bonani G., 2001. Persistent Solar Influence on North Atlantic Climate During the Holocene. Science 294, 2130—2136.

Bond G., Showers W., Cheseby M., Lotti R., Almasi P., deMenocal P., Priore P., Cullen H., Hajdas I., Bonani G., 1997. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 278, 1257—1266. doi: 10.1126/science.278.5341.1257.

Bond G., Lotti R., 1995. Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation. Science 267, 1005—1010. doi:10.1126/science.267.5200.1005.

Butler C. J., Garcia-Suarez A., Palle E., 2007. Trends and cycles in long Irish meteorological series. Biology and Environment: Proceedings of the Royal Irish Academy 107B(3), 157—165.

Chao Y., Ghil M., McWilliams J. C., 2000. Pacific interdecadal variability in this century's sea surface temperatures. Geophys. Res. Lett. 27(15), 2261—2264.

Dansgaard W., Johnsen S. J., Clausen H. B., Dahl-Jensen D., Gundestrup N., Hammer C. U., Oeschger H., 1984. North Atlantic climatic oscillations revealed by deep Greenland ice cores. Geophysical Monograph 29, 288—298.

Dansgaard W., Johnsen S. J., Reeh N., Gundestrup N., Clausen H. B., Hammer C. U., 1975. Climatic changes, norsemen and modern man. Nature 255, 24—88.

Ehlers J., Gibbard P. L., 2004. Quaternary Glaciations: Extent and Chronology 2: Part II. North America. Amsterdam: Elsevier. ISBN 0-444-51462-7.

Grootes P. M., Stuiver M., White J. W. C., Johnsen S. J., Jouzel J., 1993. Comparison of oxygen isotope records from the GIPS2 and GRIP Greenland ice cores. Nature 366, 552—554.

Hemming S. R., 2004, Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005. doi: 10.1029/2003RG000128.

Hughen K. A., 2000. Synchronous Radiocarbon and Climate Shifts During the Last Deglaciation. Science 290, 1951—1954. doi:10.1126/science.290.5498.1951.

Humlum O., Solheim J.-E., Stordahl K., 2011. Identifying natural contributions to late Holocene climate change. Global and Planetary Change 79, 145—156.

Isaksson E., Divine D., Kohler J., Martma T., Pohjola V., Motoyama H., Watanabe O., 2005. Climate oscillations as recorded in Svalbard ice core δ18O records between AD 1200 and 1997. Geografiska Annaler 87A(1), 203—214.

Lau K.-M., Weng H., 1995. Climate signal detection usingwavelet transform: howtomake a time series sing. Bull. Amer. Meteorol. Soc. 76(12), 2391—2402.

Mangerud J., Ehlers J., Gibbard P., 2004. Quaternary Glaciations: Extent and Chronology 1: Part I. Europe. Amsterdam: Elsevier. ISBN 0-444-51462-7.

Mantua N. J., Hare S. R., 2002. The Pacific Decadal Oscillation. J. Oceanography 58, 35—44.

Meese D. A., Alley R. B., Fiacco R. J., Germani M. S., Gow A. J., Grootes P. M., Illing M., Mayewski P. A., Morrison M. C., Ram M., Taylor K. C., Yang Q., Zielinski G. A., 1994. Preliminary depth-agescale of the GISP2 ice core. Special CRREL Report 94—1, US.

Minobe S., 1997. A 50—70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett. 24, 683—686.

Minobe S., 1999. Resonance in bi-decadal and penta-decadal climate oscillations over the North Pacific: role in climatic region shifts. Geophys. Res. Lett. 26, 855—858.

Minobe S., 2000. Spatio-temporal structure of the pentadecadal oscillations over the North Pacific. Progress in Oceanography 47, 381—408.

Rapp D., 2009. Ice Ages and Interglacials: Measurements, Interpretation and Models. New York: Springer-Verlag, 285 p.

Schlesinger M. E., Ramankutty N., 1994. An Oscillation in the global climate system of period 65—70 years. Nature 367, 723—726. doi:10.1038/367723a0.

Spurk M., 1998. Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3), 1107—1116.

Steig E. J., Grootes P. M., Stuiver M., 1994. Seasonal precipitation timing and ice core records. Science 266, 1885—1886.

Stuiver M., Braziunas T. F., Grootes P. M., Zielinski G. A., 1997. Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record. Quaternary Res. 48, 259—266.

Stuiver M., Grootes P. M., Braziunas T. F., 1995. The GISP2 climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Res. 44, 341—354.

Taylor K. C., 1997. The Holocene-Younger Dryas transition recorded at Summit, Greenland. Science 278, 825—827. doi:10.1126/science.278.5339.825.

Torrence C., Compo G. P., 1997. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79(1), 61—78.

Vidal L., Schneider R. R., Marchal O., Bickert T., Stocker T. F., Wefer G., 1999. Link between the North and South Atlantic during the Heinrich events of the last galcial period. Climate Dynamics 15(12), 909—919. doi:10.1007/s003820050321.

Published

2016-07-01

How to Cite

Danova, T. E., & Perelygin, B. V. (2016). Spectral-temporal analysis of long-period climatic series, the core of the Greenland borehole as an example. Geofizicheskiy Zhurnal, 38(3), 117–127. https://doi.org/10.24028/gzh.0203-3100.v38i3.2016.107783

Issue

Section

Articles