Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region
DOI:
https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823Keywords:
Carpathians, Earth crust, astenosphere, heat flow, geothermal modelAbstract
This paper presents new two-dimensional (2D) numerical geothermal models of the lithosphere and the results of their geodynamic analysis together with the crustal structure models along three deep seismic sounding profiles crossing the Western and Eastern Carpathians from the Pannonian basin to the Paleozoic West European and the Precambrian East European Platforms. The construction and interpretation of the geothermal 2D models are based on the numerical solution of both the steady state and transient heat conduction equations. The obtained geophysical and geothermal models demonstrate the significant variations in the lithosphere thickness, crustal layering, temperatures and seismic velocities distribution. Taking into consideration the crustal structure and heat flow distribution, all cross-sections can be divided into three sectors with different age of the crust: Neoalpine, Mesozoic—Late Paleozoic, early Paleozoic—Late Proterozoic. The boundaries between sectors mismatch a tectonic zonation of the upper crust. The heat flow density reaches 80—130 mW/m2 in the Pannonian basin and Transcarpathian trough (areas of Neoalpine tectonic activity). It decreases to 60—70 mW/m2 in the Inner Carpathians, inner part of the Outer Carpathians and on the West European platform (areas of Mesozoic—Late Paleozoic activity), and to 35—60 mW/m2 in the most of the Outer Carpathians, in Carpathian foredeep, Trans European suture zone, as well as the East European margin (areas of early Paleozoic—Late Proterozoic activity). The decrease in heat flow is accompanied with an increase in the lithosphere and crust thickness. The geothermal lithosphere thickness varies from 65—80 km beneath the Pannonian basin to 120—150 km beneath the Inner Carpathians and the Paleozoic platform, and to 180—200 km beneath the East European platform, and the depth of Moho discontinuity changes from 22—30 km to 30—40 km and 40—50 km accordingly. The high heat flow in the Pannonian basin is of a mantle origin. It is caused by the Miocene extension and lithosphere thinning, formation of fault and rift systems, the asthenospheric upwelling due to the subduction of the oceanic lithosphere in the time interval from late Cretaceous to Paleogene. The current structure of the Carpathian-Pannonian region was formed as a result of Neogene continental collision between the European plate and the Alcapa and Tisza microplates. Being developed in a compressional stress regime, the collision process was accompanied by lateral relative movements of the microplates along the shear zones, the upper Alcapa crust obducting over the Pennine tectonic unit or the platform margins, and underthrusting of the Pannonian lower crust and the uppermost mantle beneath the lithosphere of the European plate.
References
Geyko V. S., Shumlyanskaya A. A., Bugaenko I. V., Zaets L. N., Tsvetkova T. A., 2006. Three-dimensional model of the upper mantle of Ukraine by the terms of P-wave arrival. Geofizicheskiy zhurnal 28(1), 3—16 (in Russian).
Gintov O. B., Yegorova T. P., Tsvetkova T. A., Bugaenko I. V., Murovskaya A. V., 2014. Geodynamic features of joint zone of the Eurasian plate and the Alpine-Himalayan belt within the limits of Ukraine and adjacent areas. Geofizicheskiy zhurnal 36(5), 26—63 (in Russian).
Glushko V. V., 1994. Western and Eastern Carpathians. In: The lithosphere of Central and Eastern Europe. Young platform. Ed. A. V. Chekunov. Kiev: Naukova Dumka, P. 24—94 (in Russian).
Glushko V. V., 1968. Tectonics and petroleum potential of the Carpathians and the adjacent deflections. Moscow: Nedra, 264 p. (in Russian).
Gnylko O. M., 2011. Tectonic zoning of the Carpathians in terms terrane tectonics. 1. Main units of the Carpathians building. Geodynamika (1), 47—56 (in Ukrainian).
Dobretsov N. L., 1980. Introduction to global petrology. Novosibirsk: Nauka, 200 p. (in Russian).
Zayats Kh. B., 2013. Deep structure of the Western region of Ukraine on the basis of subsurface seismic surveys and prospecting direction of oil and gas. Lviv: Tsentr Evropy, 80 p. (in Ukrainian).
Carpathian oil province. Ed. V. V. Kolodiy. Lviv-Kiev: Ukr. Publ. Center, 2004. 388 p. (in Ukrainian).
Krupskyy Yu. Z., 2001. Geodynamic conditions of formation and oil and gas potential of the Carpathian and Volyn regions of Ukraine Podolsky. Kiev: UkrGGRI, 144 p. (in Ukrainian).
Kutas R. I., 1965. Influence of moving structures on the thermal field in the Carpathian region. Doklady AN USSR (8), 1031—1035 (in Ukrainian).
Kutas R. I., 2013. Geothermal model of the Earth's crust across the Eastern Carpathians along the seismic profile DOBRE-3 (PANCAKE). Geodynamika (2), 192—194. (in Ukrainian).
Kutas R. I., 1978. Field of heat flow and thermal model of the Earth's crust. Kiev: Naukova Dumka, 140 c. (in Russian).
Kutas R. I., 1986. Thermal model of the continental lithosphere. Geofizicheskiy zhurnal 8(1), 19—27 (in Russian).
Kutas R. I., 1993. Geothermal field and thermal regime of the lithosphere. In: The lithosphere of Central and Eastern Europe. Summary of the studies. Kiev: Naukova Dumka, P 115—135 (in Russian).
Kutas R. I., 2014. Heat flow and geometric model of the crust of the Ukrainian Carpathians. Geofizicheskiy zhurnal 36(6), 3—27 (in Russian).
Kutas R. I., Bevzyuk M. I., 1979. New results of the determination of heat flows in the territory of the South-West of the USSR. Geofizicheskiy sbornik (is. 87), 68—72 (in Russian).
Kutas R. I., Gordienko V. V., 1971. Thermal field of Ukraine. Kiev: Naukova Dumka, 140 p. (in Russian).
Kutas R. I., Gordienko V. V., Bevzyuk M. I., Zavgorodnyaya O. V., 1975. New definitions of the heat flow in the Carpathian region. Geofizicheskiy sbornik (is. 63), 68—71 (in Russian).
Kutas R. I., Korchagin I. M., Tsvyashchenko O. V., Zubal S. D., 2003. Technology of thermal field simulation in complex homogeneous and heterogeneous environments: software, methodological principles, practical results. Geoinformatyka (2), 35—45 (in Ukrainian).
Kutas R. I., Krasovskiy S. S., Orlyuk M. I., Pashkevich I. K., 1996. Model of deep structure and tectonic evolution of the lithosphere Western Ukraine. Geofizicheskiy zhurnal 18(6), 18—30 (in Russian).
Kutas R. I., Tsvyashchenko V. A., Korchagin I. N., 1989. Modelling of the thermal field of the continental lithosphere. Kiev: Naukova Dumka, 192 p. (in Russian).
Lyashkevich Z. M., Medvedev A. P., Krupskiy Yu. Z., Varichev A. S., Timoshchuk V. R., Stupka O. O., 1995. Tectonic and magmatic evolution of the Carpathian Mountains. Kiev: Naukova Dumka, 131 p.
Lyashkevich Z. M., Yatsozhinskiy O. M., 2005. Alpine magmatism of Ukrainian Carpathians, its evolution and geodynamics. Geofizicheskiy zhurnal 27(6), 1005—1011 (in Russian).
Polyak B. G., Smirnov Ya. B., 1966. Heat flux on the continents. Doklady AN SSSR 168(1), 170—172 (in Russian).
Ringwood A. E., 1981. Composition and petrology of the mantle. Moscow: Nedra, 584 p. (in Russian)
Tectonic Map of the Ukrainian Carpathians, 1986. 1 : 200 000. Eds. V. V. Glushko, S. S. Kruglov. Kiev: Ministry of Geology of the USSR (in Russian).
Tectonic map of Ukraine, 2007. 1 : 1000 000. Eds. D. S. Gurskiy, S. S. Kruglov. Kiev: UkrGGRI (in Ukrainian).
Khain V. E., 1984. Regional Geotectonics. Alpine Mediterranean belt. Moscow: Nedra, 334 p. (in Russian).
Khain V. E., 2001. Tectonics of continents and oceans. Moscow: Nauchnyy Mir, 605 p. (in Russian)
Chekunov A. V., 1970. Pannonian-Volyn transverse deflection in the Eastern Carpathians. Geofizicheskiy sbornik (is. 37), 3—13 (in Russian).
Bielik M., Šefara J., Kovač M., Bezák V., Plašienka D., 2004. The Western Carpathians — interaction of Hercynian and Alpine processes. Tectonophysics 393, 63—86.
Bodri L., Bodri B., 1985. On the correlation between heat flow and crustal thickness. Tectonophysics 120, 69—81.
Cermak V., Bodri L., 1998. Heat flow map of Europe revised. Dtsch. Geophys. Ges. 11, 58—63.
Cermak V., Bodri L., Rybach L., Buttenbarth G., 1990. Relationship between seismic velocity and heat production: comparison of two sets of data and test of validity. Earth Planet. Sci. Lett. 99, 48—57.
Global heat flow data base of he International heat flow commission of the International Association of Seismology and Physics of the Earth’s interior, 2011. University of North Dakota. Electronic document. http://www.heatflow.und.edu/index2.html.
Csontos L., Nagymarosy A., Horváth F., Kováč M., 1992. Tertiary evolution of the intra-Carpathian area: a model. Tectonophysics 208, 221—241.
Csontos L., 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanol. Spec. Is. (7), 1—3.
Demetrescu C., Andreescu M., 1994. On the thermal regime of some tectonic units in a continental collision environment in Romania. Tectonophysics 230, 265—276.
Geothermal Atlas of Europe, 1992. Eds. E. Hurtig (Editor-in-Chief), V. Cermak, R. Haenel, V. Zui. Hermann Haak Verlagsgesellschaft mbH Gotha, Germany. 156 p.
Golonka J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235—273.
Golonka J., Šlaczko A., Picha F., 2003. Geodynamic evolution of the orogen: The West Carpathians and Quachitas case study. Ann. Soc. Geol. Pol. 75, 145—167.
Grad M., Guterch A., Keller G.R., Janik T., Hegedüs E., Vozár J., Oliczka A., Tiira T., Yliniemi J., 2006. Lithosphetic structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL 05. J. Geophys. Res. 111, B03301. doi: 10.1029/2005JB003647.
Guterch A. M., Grad G. R., Keller K., Posgay J., Vozar A., Špičak E., Brueckl Z., Hajnal H., Thybo G., Selvi O. and CELEBRATION 2000 Working Group, 2003. Experiment Team. Stud. Geophys. Geod. 47, 239—252.
Horváth F., 1993. Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226, 333—357.
Janik T., Crad M., Guterch A., Vozar J., Bielik M., Vozarova A., Hegedus E., Kovacs C. A., Kovacs I., 2011. Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications. J. Geodyn. 52, 97—113.
Jolivet M., Faccenna C., Piromallo C., 2009. From mantle to crust: stretching the Meditterrantan. Earth Planet. Sci Lett. 285, 198—209.
Karnkowski P., 1992. Nowe mozliwosci poszukiwan zloz ropy naftowej i gazu ziemnego. Nafta-Gaz (5-6), 82—92 (in Polish).
Konečný V., Kovàč M., Lexa J., Sefara J., 2002. Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Spec. Publ. Ser. (1), 165—194.
Kovač M., Kovač P., Marko F., Karoli S., Janočko J., 1995. The East Slovakian Basin —A complex back-arc basin. Tectonophysics 232, 453—466.
Lenkey L., Dövenyi P., Horváth E., Cloetingh S.A., 2002. Geothermics of Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec. Publ. Ser. (3), 29—40.
Lexa J., Seghedi I., Nemeth K., Szakacs A., Konecny V., Pecskay Z., Fűlop A., Kovacs M., 2010. Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review. Central Europ. J. Geosci. (2), 207—270.
Le Pichon X., Francheteau., Bonnin J., 1973. Plate tectonics. Amsterdam, London, N-Y: Elsevier Sci. Publ. Company, 300 p.
Majcin D., 2000. Modelling of the thermal field of the inhomogeneous lithosphere. Romanian Geophys. (7), 348—351.
Majcin D., 1993. Thermal state of the west Carpathian lithosphere. Stud. Geophys. Geod. (37), 345—364.
Majcin D., Bilčík D., Kutas R., Hlavňová P., Bezák V., Kucharič L., 2014. Regional and local phenomena influencing the thermal state in the Flysch belt of the NE part of Slovakia. Contrib. Geophys. Geod. 44(4), 271—292.
Majcin D., Kutas R., Bilčik D., Bezak V., Korchagin I., 2016. Thermal conditions for geothermal energy exploitation in the Transcarpathian depression and surrounding units. Contrib. Geophys. Geod. 46(1), 33—49.
Majorowicz J. A., Cermak V., Safond J., Krzywiec P., Wroblewska M., Guterch A., Grad M., 2003. Heat flow models across the Trans-European Suture Zone in the area of the Polonaise’97 seismic experiment. Phys. Chem. Earth 28, 375—391.
Pecskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konečny V., Kovacs M., Márton E., Kaličiak M., Szeky-Fux V., Poka T., Gyarmati P., Edelstein O., Roşu E., Zec B., 1995. Space and time distribution of Neogene-Quatermary volcanism in the Carpatho-Pannonian region. Acta Vulcanol. Spec. Is. (7), 15—28.
Pecskay Z., Lexa J., Szakacs A., Seghedi I., Bologh K., Konecny V, Zelenka T., Kovacs M., Poka T., Fűlőp A., Marton E., Panaiotu .C, Cvetkovic V., 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica 57(6), 511—530.
Royden L. H., 1988. Late Cenozoic tectonics of the Panonian Basin system. In: The Pannonian Basin. A study in basin evolution. AAPG Memoir. 45, 27—48.
Rybach L., Buntebarth G., 1982. Relationship between the petrophysical properties, density, seismic velocity, heat generation and mineralogical constitution. Earth Planet. Sci. Lett. 57, 367—376.
Rybach L., 1996. Heat sources, heat transfer, and rock types in the lower continental crust-inference from deep drilling. Tectonophysics 257, 1—6.
Sándulescu M., 1988. Cenozoic tectonic history of the Carpathians. In: The Pannonian Basin. A study in basin evolution. AAPG Memoir. 45, 17—26.
Sclеter J. G., Jaupart C., Galson D., 1980. The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. Space Phys. 18(1), 269—311.
Seghedi I., Downes H., Vaselli O., Szakacs A., Balogh K., Pocskay Z. 2004. Post-collisionall Tertiary-Quaternary mafic alkalic magmatism. In the Carpathioan-Pannonian region: A review. Tectonophysics. 393, 43—62.
Seghedi I., Downes H., Harangi S., Mason P. R. D., Pécskay Z., 2005. Geochemical response of magmas to Neogene-Quatemary continental collision in the Carpathian-Pannonian region: A review. Tectonophysics 410, 485—499.
Šroda P., Gzuba W., Grad M., Guterch A., Tokarshi A. K., Janik T., Rauch M., Keller G. R., Hegedűs E., Vazar J. and CELEBRATION 2000 Working Group, 2006. Crustal and upper mantle structure of the Western Carpatians from CELEBRATION 2000 prifiles CEL 01 and CEL 04: seismic models and geological implications. Geophys. J. Int. 167, 737—760.
Starostenko V.I., Janik T., Kolomiyets K., Czuba W., Środa P., Grad M., Kovács I., Stephenson R., Lysynchuk D., Thybo H., Artemieva I. M., Omelchenko V., Gintov O., Kutas R., Gryn D., Guterch A., Hegedűs E., Komminaho K., Legostaeva O., Tiira T., Tolkunov A., 2013. Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics 608, 1049—1072.
Turcot D., Shubert G., 1982. Geodynamic Application of Continuum Physics to Geological Problems. New York. Chichester. Brisbane. Toronto. Singapore: John Wileys & Sons. 730 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).