On influence of MHD resonators upon geomagnetic pulsations
DOI:
https://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111053Keywords:
resonators, geomagnetic pulsations, discrete structure of spectrumAbstract
The examples of the time-frequency structure of geomagnetic pulsations are given. It is shown that in some cases the pulsations of different types may have one thing in common — a discrete structure of dynamic spectrum. The discreteness is manifested in the alternation of "permitted" and "forbidden" frequencies. Such a structure is analogous to a periodic ripple structure of spectral bands formed by MHD cavities in magnetosphere-ionosphere plasma. Appearance of discrete spectrum of pulsations is attributed to resonator filtering properties acting on hydro-magnetic waves as they pass through the resonant cavity. It is assumed that in some cases the discreteness can provide useful information about the propagation channels of signals of lithospheric or magnetospheric origin.References
Belyaev P. P., Polyakov S. V., Ermakova E. N., Isaev S. V., 1997. Experimental studies of the ionospheric Alfven resonator according to the observations of the electromagnetic background noise in the solar cycle 1985—1995. Radiofizika 40(10), 1305—1319 (in Russian).
Belyaev P. P., Polyakov S. V., Rapoport V. O., TrahtengertsV.Y., 1987. Detection of the resonance structure of the spectrum of atmospheric electromagnetic noise background in the range of short-period geomagnetic pulsations. Doklady AN SSSR 297(3), 840—843 (in Russian).
Belyaev P. P., Polyakov S. V., Rapoport V. O., TrahtengertsV.Y., 1989. The theory of the formation of the resonance structure of atmospheric electromagnetic noise background in the range of short-period geomagnetic pulsations. Izvestiya vuzov. Radiofizika 32(7), 802—810 (in Russian).
Dovbnya B. V., Guglielmi A. V., Potapov A. S., Kline B. I., 2013a. Existence nadionosfernogo Alfven resonator. Solnechno-zemnaya fizika is. 22, 12—15 (in Russian).
Dovbnya B. V., Guglielmi A. V., Potapov A. S., Rahmatullin R. A., 2013b. Additional resonator for ultra-low waves. Geofizicheskie issledovaniya 14, 49—58 (in Russian).
Dovbnya B. V., Zotov O. D., Mostryukov A. O., Schepetnov R. V., 2006. Electromagnetic signals in the time vicinity of earthquakes. Fizika Zemli (8), 60—65 (in Russian).
Dovbnya B. V, Potapov A. S., Rakhmatulin R. A., 2012. Impact of the earthquake on the regime of ultra-low electromagnetic emissions. Geofizicheskiy zhurnal 34(5), 189—193 (in Russian).
Ermakova E. N., 2009. Ionospheric resonance structures and their influence on the formation of the spectra of ultra fields of natural and artificial origin: Dr. phys. and math. sci. Abstract. Nizhny Novgorod: FSSI RIRR, 34 p. (in Russian).
Polyushkina T. N., Dovbnya B. V., Potapov A. S., Tsegmed B., Rakhmatulin R. A., 2014. Frequency
structure of the spectral bands of the IAR and the parameters of the ionosphere. Geofizicheskie issledovaniya (in Russian) (in print).
Polyakov S. V., Rapoport V. O., 1981. Ionospheric Alfven resonator. Geomagnetizm i aeronomiya
, 610—614 (in Russian).
Potapov A. S., Dovbnya B. V., Tsegmed B., 2008. On the effect of earthquakes on the ionospheric Alfven resonances. Fizika Zemli (4), 93—96 (in Russian).
Ostapenko A. A., Polyakov S. V., 1990. Dynamics reflection coefficient Alfven waves Pc1 range of ionospheric electron density variations at the bottom of the ionosphere. Geomagnetizm i aeronomiya
(1), 50—56 (in Russian).
Semenova N. V., Yakhnin A. G., Vasiliev A. N., Amm O., 2008. Features resonance structures in the spectra of the VLF electromagnetic noise at high latitudes (obs. Barentsburg). Geomagnetizm i aeronomiya 48(1), 40—48 (in Russian).
Troitskaya V. A., Guglielmi A. V., 1969. Geomagnetic pulsations and diagnostics of the magnetosphere.
Uspehi fizicheskih nauk 97(is. 3), 453—494 (in Russian).
Baransky L., Golikov Yu., Feygin F., Harchenko I., Kangas J., Pikkarainen T., 1981. Role of the plasmapause and ionosphere in the generation and propagation of pearl pulsations. J. Atmos. Terr. Phys. 43, 875—881.
Belyaev P. P., Bösinger T., Isaev S. V., Kangas J., 1999. First evidence at high latitudes for the ionospheric Alfvén resonator. J. Geophys. Res. 104, 4305—4317. doi:10.1029/1998JA900062.
Bösinger T., Haldoupis C., Belyaev P. P., Yakunin M. N., Semenova N. N., Demekhov A. G., Angelopou- los V., 2002. Spectral properties of the ionospheric Alfven resonator observed at a low-latitude station (L=1.3). J. Geophys. Res. 107(A10), 1281. doi: 10.1029/2001JA005076.
Chaston C. C., Bonnell J. W., Carlson C. W., Berthomier M., Peticols L. M., Roth I., McFadden J. P., Ergun R. E., Strangeway R. J., 2002. Electron acceleration in the ionospheric Alfvén resonator. J. Geophys. Res. 107(A11), 1413. doi:10.1029/2002JA009272.
Dovbnya B. V., Zotov O. D., Klain B. I., Kurazhkovskaya N. A., Potapov A. S., Rakhmatulin R. A., 2012a. Spectral properties of the Pc1 waves and noise-like pulsations with resonance structure. 9th International conference «Problems of Geocosmos», October 8—12, 2012, St. Petersburg. Book of Abstracts. P. 164.
Dovbnya B. V., Zotov O. D., Klain B. I., 2012b. 9th International conference «Problems of Geocosmos», October 8—12, 2012, St. Petersburg. Book of Abstracts. P. 163.
Dovbnya B. V., Potapov A. S., Rakhmatulin R. A., 2010. Earthquake effects in the pulsations of geomagnetic field. Proceedings of the 8th Int. Conf. «Problems of Geocosmos» (St. Petersburg, Russia, 20—24 Sept. 2010), 403—407.
Demekhov A. G., Trakhtenherts V. Yu., Bösinger T., 2000. Pc1 waves and ionospheric Alfven resonator: Generation or filtration. Geophys. Res. Lett. 27, 3805—3808.
Fedorov E., Schekotov A. Ju., Molchanov O. A., Hayakawa M., Surkov V. V., Gladichev V. A., 2006. An
energy source for the mid-latitude IAR: World thunderstorm centers, nearby discharges or neutral wind fluctuations? Phys. Chem. Earth. 31, is. 4-9, 462—468.
Feygin F. Z., Nekrasov A. K., Mursula K., Kangas J., Pikkarainen T., 1994. Coherent multiple Pc1 pulsation bands: possible evidence for ionospheric Alfven resonator. Ann. Geophys. 12, 147—151.
Guglielmi A., Potapov A., Tsegmed B., Hayakawa M., Dovbnya B., 2006. On the earthquake effects in the regime of ionospheric Alfvén resonances. Phys.Chem. Earth. 31, 469—472.
Lysak R. L. 1991. Feedback instability of the ionospheric resonator cavity . J. Geophys. Res. 96, A2, 1553—1568.
Lysak R. L., Yoshikawa A., 2006. Resonant cavities and waveguides in the ionosphere and atmosphere. In: Magnetospheric ULF Waves: Synthesis and New Directions, Geophys. Monogr. Ser., V. 169. P. 289—306. AGU, Washington, D. C.
Molchanov O. A., Schekotov A. Yu., Fedorov E., Hayakawa M., 2004. Ionospheric Alfven resonance at middle latitudes: results of observations at Kamchatka. Phys. Chem. Earth 29, 649—655.
Parent A., Mann I. R., Rae I. J., 2010. Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator. J. Geophys. Res. 115, A02312. doi:10.1029/2009JA014673.
Pokhotelov O. A., Khruschev V., Parrot M.,Senchenkov S., Pavlenko V., 2001. Ionospheric Alfven resonator revisited: Feedback instability. J. Geophys. Res. 106, 813.
Semenova N. V., Yahnin A. G., 2008. Diurnal behaviour of the ionospheric Alfven resonator signatures as observed at high latitude observatory Barentsburg (L=15). Ann. Geophys. 26, 2245—2251.
Shalimov S., Bösinger T., 2008. On distant excitation of the ionospheric Alfvén resonator by positive Cloud- to-ground lightning discharges. J. Geophys. Res.113, A02303. doi:10.1029/2007JA012614.
Streltsov A. V., Karlsson T., 2008. Small scale, localized electromagnetic waves observed by Cluster: Result of magnetosphere-ionosphere interactions. Geophys. Res. Lett. 35, L22107.
Surkov V. V., Hayakawa M., Schekotov A. Y., Fedorov E. N., Molchanov O. A., 2006. Ionospheric
Alfvén resonator excitation due to nearby thunderstorms. J. Geophys Res. Space Phys. 111, A01303. doi:10.1029/2005JA011320.
Yahnin A. G., Semenova N. V., Ostapenko A. A., Kangas J., Manninen J., Turunen T., 2003. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1—4 Hz at L=5.2. Ann. Geophys. 21, 779—786.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).