Deep seismogenic zone Vrancea as an indicator of geodynamic processes
DOI:
https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111101Keywords:
Vrancea zone, earthquakes sources, tectonophysics, geodynamics, seismotomographic, axes of stressesAbstract
Tectonophysical interpretation of 80 mechanisms of earthquake sources (80—172 km deep) during 1940—2011 has been performed for seismogenic zone Vranchea. Functioning nodal planes of mechanisms have been identified as the planes of uplifts and uplift-shifts that were formed under conditions of sub-horizontal pressure. Structural scheme of deep zone Vranchea has been plotted where functioning nodal planes have been united into thrust-fault, uplifts and uplift-shift zones extending in northeastern, northwestern, north-northwestern and sub-latitudinal directions. It has been shown that orientation of zone Vranchea shift planes is close to orientation of shift planes of flysh Carpathians and large fault zones intersecting it. These results contradict two main concepts of zone Vranchea formation based on mechanisms of tearing off slabs of oceanic lithosphere or delamination of continental lithosphere because they assume the turn of a segment of lithosphere from sub-horizontal to sub-vertical position and a fairly strong deformation of lithosphere including the lower crust on the areas adjacent to the zone. According to DSS and seismotomographic data, the structure of the earth’s crust and upper mantle in the area of eastern oro-wedge of Carpathians is little different from the structure of the crust and mantle in other parts of the Carpathian section of Alpines. Alternative concept has been proposed issued from consideration that the Vranchea zone is not a petrologic body – a part of oceanic or continental plate included into subduction-collision processes and moved to present position but more probably the deformation zone of overall lateral (horizontal) pressing appeared in situ as a result of cramming of a narrow enough indentor of a micro-plate Tissa-Dakya into produced by them oro wedge of the Carpathians. Overall lateral pressing favored the resistance to indentor movement from the side of the northern part of the Mysian microplane, Gobrogea and the West Black Sea microplate and also centriclinal decline of fault zones limiting its movement from the north and south. Such formation of Vranchea zone in situ is confirmed by its disposition in the zone of intersection of large-scale fault zones — Trans-European suture zone, South-Carpathian zone et al.References
Aronsky A. A., Belichenko P. V., Gintov O. B., Murovskaya A. V., 1995. Kinematic parameters of deformation of the upper horizons of the Earth’s crust of Ukrainian Carpathians in the Miocene-Pleistocene (according to tectonophysical data). Geofizicheskiy zhurnal 17(6), 3—13 (in Russian).
Bubnyak I. N., Vikhot Yu. M., Nakapelyukh M. V. 2013. Stress-strained state of the south-eastern part of the Skiba and Boryslav-Pokuttia napps in the Ukrainian Carpathians. Geodynamics & Tectonophysics 4(3), 313—326 (in Russian).
Bugayenko I. V., Shumlyanskaya L. A., Zaets L. N., Tsvetkova T. A., 2008. Three-dimensional P-velocity model of the Black Sea mantle and adjacent territory. Geofizicheskiy zhurnal 30(5), 145—160 (in Russian).
Vvedenskaya A. V., 1969. Research of tension and breaks in the earthquake foci by means of dislocations theory. Moscow: Nauka, 136 p. (in Russian).
Vinnik L. P., 1980. Heterogeneity of the upper mantle around the Vrancha zone of intermediate earthquakes. In: The Carpathian earthquake on March 4, 1977 and its Consequences. Moscow: Nauka, 41—45 (in Russian).
Volfman Yu.M., 2015. Deformation modes and kinematic environments of the latest tectonic faulting within the Crimean Mountains. 2. Geofizicheskiy zhurnal 37(1), 100—120 (in Russian).
Volfman Yu. M., Kolesnikova E. Ya., 2014. Seismotectonics of the Vrancea focal zone. Active Faults and their Implications for Seismic Hazard Assessment: Present State of the Problem: Proceedings of the XIX Scientific and Practical Conference with International Participation, 7—10 October 2014. Voronezh: Publishing and Polygraphic Centre "Nauchnaya Kniga", Р. 85—89 (in Russian).
Geyko V. S., Bugayenko I. V., Shumlyanskaya L. A., Zaets L. N., Tsvetkova T. A., 2007. 3-D P-velocity structure of the upper mantle of the East Mediterranean. Geofizicheskiy zhurnal 29(4), 13—30 (in Russian).
Geyko V. S., Tsvetkova T. A., Sannikova N. P., Livanova L. P., Geyko K. V., 1998. Regional 3-D P-velocity structure of the mantle of northwestern Eurasia — I. Europe.1. Geofizicheskiy zhurnal 20(3), 67—91 (in Russian).
Gintov O. B., 2005. Field Tectonophysics and its Application in the Crustal Deformation Study of Ukraine. Kiev: Feniks, 572 p. (in Russian).
Gintov O. B., Bubnyak I. N., Vikhot Yu. M., Murovskaya A. V., Nakapelyukh M. V., Shlapinskiy V. E., 2014 a. Tectonophysical and palinspastic sections of the Ukrainian Carpathians along the DOBRE-3 (PANCAKE) geotraverse. Geofizicheskiy zhurnal 36(3), 3—33 (in Russian).
Gintov O. B., Egorova T. P., Tsvetkova T. A., Bugaenko I. V., Murovskaya A. V., 2014 b. Geodynamic features of the junction zone of the Eurasian plate and the Alpine-Himalayan belt in Ukraine and adjacent areas. Geofizicheskiy zhurnal 36(5), 26—63 (in Russian).
Gonchar V. V., 2013. Collisional model of the Crimean Orogen: research experience by finite element method. Geofizicheskiy zhurnal 35(6), 146—164 (in Russian).
Gushchenko O. I., 1979. Reconstruction of megaregional tectonic stress fields of seismically active regions in Eurasia. In: Stress and Strain Fields in the Lithosphere. Moscow: Nauka, 7—25 (in Russian).
Dinnik A. N. 1956. Selected Works. Kiev: Publ. House of the Ukrainian Academy of Sciences, 307 p. (in Russian).
Carpathian earthquake March 4, 1977 and its consequences, 1980. Ed. A. V. Drumya. Moscow: Nauka, 272 p. (in Russian).
Carpathian earthquake August 30, 1986, 1990. Eds. A. V. Drumya, N. V. Shebalin. Kishenev: Shtiintsa, 333 p. (in Russian).
Lyskova L., Yanovskaya T. B., 2013. Velocity structure of the upper mantle in the Vrancea zone according to noise surface wave tomography. Voprosy geofiziki (is. 46), 3—13 (in Russian).
Pustovitenko B. G., Kapitanova S. A., 1991. Experience in use of azimuthal travel-time curves to evaluate the characteristics of gaps in the Crimean earthquake foci. In: Seismological Bulletin of the Western Zone of the Unified System of Seismic Observations of the USSR for 1988. Kiev: Naukova Dumka, P. 152—155 (in Russian).
Rebetskiy Y. L., Ovcharenko O. O., Savvichev P. A., 2014. Field of the present day stresses of the crust of the southwestern Europe and Mediterranean. Vestnik KRAUNTS. Nauki o Zemle (2, is. 24), 68—84 (in Russian).
Riznichenko Yu. V., 1985. Problems of Seismology. Selected Works. Moscow: Nauka, 408 p. (in Russian).
Sagalova E. A., 1975. The focal area of the Carpathian earthquakes in the Vrancea mountains. Geofizicheskiy sbornik is.68, 5—81(in Russian).
Sollogub V. B., Chekunov A. V., Shchukin Yu. K., Guterch A., Kondorskaya N. V., Sidorov V. P., Kharitonov O. M., Khomenko, V. I., Grad M., Matezhok R., Paykhel Ya., Perhuts E., 1980. Project and first results of the international geophysical studies on deep structure of the lithosphere along the geotraverses in the south-eastern Europe. Geofizicheskiy zhurnal 2(5), 3—13 (in Russian).
Sollogub V. B., Chekunov A. V., Sologub N. V., Kharitonov O. M., Kutas R. I., Kornya I., Radulesku F., Baisarovich M. N., Borodulin M. I., Turchanenko N. T., Malovitskiy Ya. P., Pustylnikov M. R., Voevodina A. V., Drumya A. V., Skovitin A.I., Chernyiy V. I., 1983. Lithosphere structure of the Carpathian-Crimean segment of the Mediterranean fold belt. Geofizicheskiy zhurnal 5(1), 3—13 (in Russian).
Sollogub V. B., Chekunov A. V., Starostenko V. I., Kutas R. I., Bulakh E. G., Sologub N. V., Kharitonov O. M., Pashkevich I. K., Pustylnikov M. R., Borodulin M. A., Shlyakhovskiy V. A., Kapitsa Yu. M., Kulik S. N., Kornya I., Biter M., Demitresku K., Lazaresku V., Pompilyan A., Radulesku F., Reymanu V., 1985. Lithosphere structure along the geotraverse V from complex geological and geophysical data. Geofizicheskiy zhurnal 7(4), 3—18 (in Russian).
Starostenko V. I., Kendzera A. V., Tsvetkova T. A., Bugaenko I. V., 2013. Intermediate earthquakes of the Vrancea zone and velocity structure of the mantle beneath Eastern Europe. Geofizicheskiy zhurnal 3(3), 31—45 (in Russian).
Stepanenko N. Ya., Simonova N. A., Kardanets V. Yu., 2013. Spatial variations of the axes of major stresses in the Vrancea earthquake foci zone. In: Seismological Bulletin of Ukraine for 2012. Sevastopol: SPC "ECOS-Hydrophysics", P. 46—56 (in Russian).
Structure of the Crust and Upper Mantle of the Central and Eastern Europe, 1978. Eds. V. B. Sollogub, A. Guterh, D. Prosen. Kiev: Naukova Dumka, 271 p. (in Russian).
Kharitonov O. M., Krasovskiy S. S., Kuprienko P. Ya., Kutas V. V., Sologub N. V., Drogitskaya G. M., Timoshenko V. I., Shlyahovskiy V. A., 1993. Lithospheric transect Vrancea—South-Ukrainian AES. Geofizicheskiy zhurnal 15(5), 23—31 (in Russian).
Tsvetkova T. A., Bugaenko I. V., 2012. Seismic tomography of mantle beneath the East European Platform: mantle velocity boundaries. Geofizicheskiy zhurnal 34(5), 161—172 (in Russian).
Chekunov A. V., 1986. Vrancea seismic area — tectonic aspect. Dopovidi AN URSR. Ser. B (5), 21—26 (in Russian).
Chekunov A. V., 1987.Tectonic model of the Vrancea seismic area in the Carpathians. Geologicheskiy zhurnal (4), 3—11 (in Russian).
Shchukin Yu. K., Dobrev T. D., 1980. Deep geological structure, geodynamics and geophysical fields of the Vrancea focal zone. In: Carpathian Earthquake March 4, 1977 and its Consequences. Moscow: Nauka, 7—40 (in Russian).
Besutio L., Cadicheanu N., 2002. Preliminary considerations on the space-time dynamics of the intermediate-depth seismicity within Vrancea zone. The natural geodynamic laboratory Vrancea, a challenge for the 21st century. Bucharest, P. 25—33.
Bocin A., Stephenson R., Tryggvason A., Panea I., Mocanu V., Hauser F., Matenco L., 2005. 2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland. Tectonophysics 410, 273— 291.
Chalot‐Prat F., Girbacea R., 2000. Partial delamination of continental mantle lithosphere, uplift‐related crust‐mantle decoupling, volcanism and basin formation: a new model for the Pliocene‐Quaternary evolution of the southern East Carpathians, Romania. Tectonophysics 327, 83—107.
Constantinescu L., 1978. An extreme romanian earthquake and its wider geonomical setting. Revue roumaine de géologie, géophysique et géographie. Série géophysique 22(2), 179—206.
Csontos L., Vörös A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology 210 (1), 1—56.
Delvaux D., 1993. The TENSOR program for paleostress reconstruction: examples from the east African and the Baikal rift zones. Abstract supplement № 1 to Terra Nova. Vol. 5. P. 75—100.
Enciu D. M, Knapp C. C., Knapp J. H., 2009. Revised crustal architecture of the southeastern Carpathianforeland from active and passive seismic data. Tectonics 28, TC4013. doi:10.1029/2008TC002381.
Fan G., Wallace T. C., Zhao D., 1998. Tomographic imaging of deep velocity structure beneath the Eastern and Southern Carpathians, Romania: Implications for continental collision. J. Geophys. Res. 103(B2), 2705—2723.
Fodor L., Csontos L., Bada G., Györfi I., Benkovics L., 1999. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. In: The Mediteranean basins: Tertiary extension within the Alpine orogen. Geol. Soc. London Spec. Publ. №. 156. P. 295—334.
Gągała Ł., Vergés J., Saura E., Malata T., Ringenbach J. -C., Werner Ph., Krzywiec P., 2012. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modeling. Tectonophysics 532-535, 223—241.
Girbacea R., Frisch W., 1998. Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 26, 611— 614.
Golonka J., Krobicki M., Oszczypko N., Slaczka A., Slomka T., 2003. Geodynamic evolution and palaeogeography of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest Cretaceous). In: Tracing Tectonic Deformation Using the Sedimentary Record. Geol. Soc. London. Spec. Publ. Vol. 208. P. 138—158.
GPS Probes the Kinematics of the Vrancea Seismogenic Zone, 2004. EOS Trans. AGU 85(19), 185—196.
Grad M.,Tiira T. and ESC Working Group, 2008. The Moho depth map of the European Plate. Geophys. J. Int. 176, 279—292.
Heidbach O., Reinecker J., Tingay M., Müller B., Sperner B., Fuchs K., Wenzel F., 2007. Plate boundary forces are not enough: second‐ and third‐order stress patterns highlighted in the World Stress Map database. Tectonics 26, TC6014.
Hauser F., Raileanu V., Fielitz W., Bala A., Prodehl C., Polonic G., Schulze A., 2001. VRANCEA99 — The crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania. Tectonophysics 340, 233—256. doi:10.1016/S0040—1951(01)00195—0.
Hauser F., Raileanu V., Fielitz W., Dinu C., Landes M., Bala A., Prodehl C., 2007. Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania. Tectonophysics 430, 1—25.
Hippolite J.-C., 2002. Geodynamics of Dobrogea (Romania): new constraints on the evolution of the Tornquist—Teisseyre Line, the Black Sea and the Carpathians. Tectonophysics 357, 33—53.
Knapp J. H., Knapp C. C., Raileanu V., Matenco L., Mocanu V., Dinu C., 2005. Crustal constraints on the origin ofmantle seismicity in the Vrancea Zone, Romania: The case for active continental delamination. Tectonophysics 410, 311— 323. doi:10.1016/j.tecto.2005.02.020.
Kovač M., Nagymarosy A., Oszczypko N., Slaczka A., Csontos L., Maruntenau M., Marton E., 1998. Palinspastic reconstruction of the Carpathian—Pannonian region during the Miocene. In: Geodynamic Development of the Western Carpathians. Geol. Surv. Slovak Republic, Bratislava. P. 189—217.
Koulakov I., Zaharia B., Enescu B., Radulian M., Popa M., Parolai S., Zschau J., 2010. Delamination or slab detachment beneath Vrancea New arguments from local earthquake tomography. Geochem. Geophys. Geosist. 11(3), Q03002. doi: 10.1029/g///c002811.
Landes M., Fielitz W., Hauser F., Popa M., the CALIXTO Group, 2004. 3-D upper crustal tomographic structure across the Vrancea seismic zone, Romania. Tectonophysics 382, 85—102. doi:10.1016/j.tecto.2003.11.013.
Linzer H. -G., 1996. Kinematics of retreating subduction along the Carpathian arc, Romania. Geology 24(2), 167—170.
McKenzie D. P., 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull. Seism. Soc. Amer. 59(2), 591—602.
Mucuta D. M., Knapp C. C., Knapp J. H., Mocanu V., Raileanu V., 2005. Neotectonic southeast Carpathian foreland deformation and genetic association with the Vrancea Seismogenic Zone. EOS Trans. AGU 86(52), T51C—1358.
Martin M., Ritter J. R. R., the CALIXTO Working Group, 2005. High resolution teleseismic body wave tomography beneath SE Romania, I. Implication for three-dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model. Geophys. J. Int. 162, 448— 460. doi:10.1111/j.1365—246X.2005.02661.x.
Martin M., Wenzel F., the CALIXTO Working Group, 2006. Hig resolution teleseismic body wave tomography beneath SE Romania, II. Imaging of a slab detachment scenario. Geophys. J. Int. 164, 579— 595. doi:10.1111/j.1365—246X.2006.02884.x.
Matenco L., Bertotti G., Dinu C., Cloetingh S., 1997 a. Tertiary tectonic evolution of the external Southern Carpathians and adjacent Moesian platform (Romania). Tectonics 16(6), 896—911.
Matenco L., Zoetemeijer R., Cloetingh S., Dinu C., 1997 b. Lateral variations in mechanical properties of the Romanian external Carpathia : inferences of the flexure and gravity modeling. Tectonophysics 282, 147—166.
Muller B., Heidbach O., Negut M., Sperner B., Buchma T., 2010. Attached or not attached evidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania. Tectonophysics 482, 139—149.
Neugebauer J., Greiner B., Appel E., 2001. Kinematics of the Alpine-West Carpathian orogen and palaeogeographic implications. J. Geol. Soc. Lond. 158, 97—110.
Oncescu M. -C., Bonjer K. -P., 1997. A note on the depth recurrence and strain release of large Vrancea earthquakes. Tectonophysics 272, 291—302.
Panea I., Stephenson R., Knapp C., Mocanu V., Drijkoningen G., Matenco L., Knapp J., Prodehl K., 2005. Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania). Tectonophysics 410, 293—309.
Radulescu F. A., 1981. Crustal seismic studies in Romania. Revue Roumaine de Geologie, Geophysique et Geographie. Serie de Geophysique 25, 57—74.
Schmid S., Bernoulli D., Fügenschuh B., Matenco L., Schefer S., Schuster R., Tischler M., Ustaszewski K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J. Geosci. 101, 139—183.
Sperner B., Lorenz F., Bonjer K., Hettel S., Müller B., Wenzel F., 2001. Slab break-off — abrupt cut or gradual detachment? New insights from the Vrancea Region (SE Carpathians, Romania). Terra Nova (13), 172—179.
Starostenko V., Janik T., Kolomiyets K., Czuba W., Środa P., Grad M., Kovács I., Stephenson R., Lysynchuk D., Thybo H., Artemieva I. M., Omelchenko V., Gintov O., Kutas R., Gryn D., Guterch A., Hegedűs E., Komminaho K., Legostaeva O., Tiira T., Tolkunov A., 2013. Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Тectonophysics 608, 1049—1072.
Tondi R., Achauer U., Landes M., Davi R., Besutiu L., 2009. Unveiling seismic and density structure beneath the Vrancea seismogenic zone, Romania. J. Geophys. Res. 114, B11307. doi:10.1029/2008JB005992.
Trifonov V. G., Ivanova T. P., Bachmanov D. M., 2010. Vrancea and Hindu Kush areas of mantle earthquakes: comparative tectonic analysis. Scientific Annals, School of Geology, Aristotle University of Thessaloniki Proceedings of the XIX CBGA Congress, Thessaloniki, Greece. Spec. vol. 99. P. 51—56.
Vasiliev I., Maţenco L., Krijgsman W., 2009.The syn- and post-collisional evolution of the Romanian Carpathian foredeep: New constraints from anisotropy of magnetic susceptibility and paleostress analyses. Tectonophysics 473, 457—465.
Volfman Yu. M., Gintov O. B., Kolesnikova E. Ya., Murovskaya A. V., 2014. Tectonophysical interpretation of earthquake focal mechanisms of the Zagros system. Geodynamics & Tectonophysics 5(1), 305—319.
Weidle C., Widiyantoro S., CALIXTO Working Group, 2005. Improving depth resolution of teleseismic tomography by simultaneous inversion of teleseismic and global P-wave traveltime data-application to the Vrancea region in Southeastern Europe. Geophys. J. Int. 162, 811—823.
Wenzel F., Sperner B., Lorenz F., Mocanu V., 2002. Geodynamics, tomographic images and seismicity of the Vrancea region (SE-Carpathians, Romania). EGU Stephan Mueller Spec. Publ. Ser. (3), 95—104.
Wortel M., Spakman W., 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 1910—1917.
Zugravescu D., Polonic G., 2002. Present-day stress field in the southeastern in the Vrancea region derived from seismicity data. In: The natural geodynamic laboratory Vrancea, a challenge for the 21st century. Bucharest, P. 35—45.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).