Numerical calculations of elastic constants of sedimentary strata in triclinic approximation based on vertical seismic profiling data

Authors

  • G.T. Prodayvoda T. Shevchenko Kyiv National University, Ukraine
  • P. Kuzmenko T. Shevchenko Kyiv National University, Ukraine
  • A. Vyzhva T. Shevchenko Kyiv National University, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111105

Keywords:

azimuthal anisotropy, elastic constants, symmetry, seismic waves

Abstract

It has been firstly determined the symmetry and complete component set of tensor matrix of elastic constants and elastic compliances by inversion of radial velocity indicatrices for quasi-longitudinal, "quick" and "slow" quasi-transverse waves that are obtained according to the VSP method in the standard acoustic coordinate system. It was established that the elastic constants of clay strata have planar triclinic symmetry and carbonate strata have axial rhombic symmetry. The value of the elastic anisotropy integral coefficient is nearly 22 %. Longitudinal axis and acoustic normal of sedimentary strata were firstly determined according to field seismic survey. The estimation errors of elastic symmetry approximation for sedimentary strata by models with transversely isotropic and orthorhombic symmetry were calculated. It is proved that such approximation significantly changes the nature of the seismic wave azimuthal anisotropy and causes high error, which can significantly reduce the 3D seismic efficiency to the oil and gas exploration in the complex geological conditions.

References

Aleksandrov K. S., Prodayvoda G. T., 2000. The elastic properties anisotropy of rocks and minerals. Novosibirsk: SB RAS Publ., 354 p. (in Russian).

Goldin S. V., 2008. Seismic waves in anisotropic media. Novosibirsk: SB RAS Publ., 375 p. (in Russian).

Lyakhovitskiy F. M., Sirotenko D. O., 1994. Elastic anisotropy parameters of orthotropic geological environments. Izvestiya RAN. Ser. Fizika Zemli (9), 46—50 (in Russian).

Prodayvoda G. T., 2004. Acoustics of rock textures. Kyiv: Publ. house of geographical literature «Obriyi», 144 p. (in Ukrainian).

Prodayvoda G. T., 1998. Invariant-polarization acoustic method for determining the elastic constants of rocks. Geofizicheskiy zhurnal 20 (6), 83—95 (in Russian).

Prodayvoda G. T., 1978a. Some practically important analogies between the acoustic and optical phenomena in crystals. Zapiski VMO part 107 (is. 2), 220—227 (in Russian).

Prodayvoda G. T., 1978. Symmetry principles in petrophysics. Geologicheskiy zhurnal 38 (14), 61—70 (in Russian).

Prodayvoda G. T., Bezrodny D. A., 2011. Acoustic textural analysis of rocks. Kyiv: Publishing and printing center «Kyiv University», 303 p. (in Ukrainian).

Prodayvoda G. T., Vyzhva S. A., Bezrodny D. A., Bezrodna I. M., 2011. Acoustic textural analysis of metamorphic rocks of Kryvorizhzhya. Kyiv: Publishing and printing center «Kyiv University», 368 p. (in Ukrainian).

Prodayvoda G. T., Kulikov A. A., 1998. Investigation of elastic symmetry and elastic wave anisotropy in sedimentary rocks. Izvestiya RAN. Ser. Fizika Zemli (4), 79—88 (in Russian).

Riznichenko Yu. V., 1949. About seismic quasi anisotropy. Izvestiya AN SSSR. Cer. geograf. i geofiz. (6), 518—544 (in Russian).

Sirotin Y. I., Shaskolskaya M. P., 1975. Fundamentals of crystal physics. Moscow: Nauka, 680 p. (in Russian).

Fedorov F. I., 1965. Theory of elastic waves in crystals. Moscow: Nauka, 386 p. (in Russian).

Shafranovskiy I. I., Plotnikov L. M., 1975. Symmetry in geology. Leningrad: Nedra, 144 p. (in Russian).

Alexandrov K. S., Prodayvoda G. T., 1994. The study of elastic symmetry and anisotropy of elastic body waves in gneiss. Geophys. J. Int. 119, 715—728.

Bachman R. T., 1983. Elastic anisotropy in marine sedimentary rocks. J. Geophys. Res. 88 (81), 539—545.

Brodov L. Y., Evstifeyev V. I., Karus E. V., Kulichikhina T. N., 1984. Some results of the experimental study of seismic anisotropy of sedimentary rocks using different types of waves. Geophys. J. Roy. Astron. Soc. 76, 191—200.

Crampin S., Chesnokov E. M., Hipkin R. A., 1984. Seismic anisotropy — the state of the art. First Break 2 (3), 9—18.

Gill P. E., Murray W., Wright M. H., 1981. Practical Optimization. London: Acad. Press, 401 p.

Grechka V., 2009. Applications of seismic anisotropy in the oil and gas industry. EAGE Publication, 172 p.

Jolly R. N., 1956. Investigation of shear waves. Geophysics 21, 905—938.

Musgrave M. J. R., 1970. Crystal Acoustics. Holden-Day. San Francisco: CA, 1970. 288 p.

Nye J. F., 1957. Physical properties of crystals: their representation by tensors and matrices. Oxford: Clareudon Press, 322 p.

Paterson M. S., Weiss L. E., 1961. Symmetry concepts in the structural analysis of deformed rock. Geol. Soc. Amer. Bull. 72 (6), 841—882.

Thomsen L., 1986. Weak elastic anisotropy. Geophysics 51 (10), 1954—1966.

Tsvankin I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics 62, 1292—1309.

Vander Stoep D. M., 1966. Velocity anisotropy measurement in wells. Geophysics 32, 900—916.

White J. E., Martineau-Nicoletis L., Monach C., 1983. Measured anisotropy in Pierre shale. Geophys. Prosp. 31, 709—725.

Published

2015-06-01

How to Cite

Prodayvoda, G., Kuzmenko, P., & Vyzhva, A. (2015). Numerical calculations of elastic constants of sedimentary strata in triclinic approximation based on vertical seismic profiling data. Geofizicheskiy Zhurnal, 37(3), 102–123. https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111105

Issue

Section

Articles