Adequate velocity model as a basis for effective seismic imaging when mapping hydrocarbon traps associated with salt domes
DOI:
https://doi.org/10.24028/gzh.0203-3100.v37i1.2015.111333Keywords:
pre-stock traps, seismic images, seismic migration, deep-velocity model, polar velocity anisotropy, azimuthal velocity anisotropyAbstract
This paper is the second one in a series of tutorials on the usage of modern migration methods for seismic imaging in areas of intense salt tectonics. In the paper, it is shown the importance of building an adequate velocity model for effective seismic imaging and subsequent mapping of hydrocarbon traps associated with salt domes. To solve this problem, ray-based tomography, delayed imaging time scans and full waveform inversion are successfully used. Moreover, the paper shows the importance of evaluating properly and taking into account velocity anisotropy when making seismic images. This is demonstrated with real seismic data obtained in areas of heavy halokinesis.
References
Bannikov G. A., Bennion P., Geiger L., Whiteside W., Xu W., Li Z., Lundy, A., Chang I., 2009. Anisotropic Prestack Depth Migration with Tomography for Velocity Optimization. Proc. of the II Int. Geological and Geophysical Conf. and Exhibition «Tyumen-2009» (in Russian).
Marmalyevskiy N. Ya., Roganov Yu. V., Gornyak Z. V., Mershchiy V. V., Kostyukevich A. S., Gazaryan Z. I., 2005. Yu. V. Timoshin’s ideas and new diffraction transforms. Zbirnyk naukovykh prats UkrDGRI (3), 43—63 (in Ukrainian).
Tiapkina A. N., Tyapkin Yu. K., Okrepkiy A. I., 2014. Аdvanced methods for seismic imaging when mapping hydrocarbon traps associated with salt domes. Geofizicheskiy zhurnal 36(3), 57—74 (in Russian).
Birdus S., Sun J., Sun W., Xie Y., Gazzoli M., Andreolli M., Ursulic A., 2012. Multi-azimuth PSDM processing in the presence of orthorhombic anisotropy — A case history offshore North West Australia. 82nd SEG Meeting: Expanded Abstracts. P. 1—5.
Bowling J., , Ji S., Lin D., Chergotis D., Nolte B., Yanchak D., 2010. Mad Dog TTI RTM: better than expected. 80th SEG Meeting: Expanded Abstracts. P. 3113—3116.
Dewey F., Van der Meulen M., Whitfield P., 2006. Using dual-azimuth data to image below salt domes. First Break 24(6), 55—59.
Epili D., Cloudy G., Cai J., Zhang Q., CampR., Lopez-Mora S., 2011. Improved subsalt imaging using TTI anisotropy and reverse time migration scans. 81st SEG Meeting: Expanded Abstracts. P. 243—247.
Fruehn J. K., Arnaud J., Cha G., Akinmusire T., 2007. Anisotropic 3D PreSDM offshore Nigeria. 69th EAGE Conference: Expanded Abstracts. Paper CO42.
Gersztenkorn A., Marfurt K. J., 1999. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 64(5), 1468—1479.
Granger P.-I., Bonnot J.-M., 2001. C-wave resolution enhancement through birefringence compensation at the Valhall field. 63rd EAGE Conference: Expanded Abstracts. Paper P118.
Gray S., Trad D., Biondi B., Lines L., 2006. Towards wave-equation imaging and velocity estimation. CSEG Recorder. Special Edition. P. 47—53.
Grechka V., 2009. Applications of seismic anisotropy in the oil and gas industry. Houten: EAGE Publ., 171 p.
Haugen J. A., Arntsen B., Mispel J., 2008. Modeling of dirty salt. 78th SEG Meeting: Expanded Abstracts. P. 2127—2131.
He Y., Gersztenkorn A., Hilburn G., Yang S., Wang B., 2013. Orthorhombic PSDM processing, a case history in Mississippi Canyon, Gulf of Mexico. 83rd SEG Meeting: Expanded Abstracts. P. 3799—3803.
Huang T., Yu B., 2009. Unlocking the potential of WAZ data at the Tonga Discovery with TTI reverse time migration. 79th SEG Meeting: Expanded Abstracts. P. 532—536.
Huang Y., Lin D., Bai B., Roby S., Ricardez C., 2010. Challenges in presalt depth imaging of the deepwater Santos Basin, Brazil. The Leading Edge 29(7), 820—825.
Isaac J. H., Lawton D. C., 1999. Image mispositioning due to dipping TI media: A physical seismic modeling study. Geophysics 64(4), 1230—1238.
Isaaс J. H., Lawton D. C., 2002. Image mispositioning in Foothills seismic data due to a dipping transversely isotropic overburden: Implications from physical seismic modeling studies. CSEG Recorder (3), 34—38.
Isaaс J. H., Lines L. R., 2002. Where’s the reef? CSEG Recorder (3), 30—32.
Jenner E., 2012. Combining VTI and HTI anisotropy in prestack time migration: Workflow and data examples. The Leading Edge 31(7), 732—739.
Jones I. F ., Bridson M. L., Bernitsas N., 2003. Anisotropic ambiguities in TI media. First Break 21(4), 31—37.
Jones I. F., 2008. A modeling study of pre-processing considerations for reverse-time migration. Geophysics 73(6), T99—T106.
Leveille J. P., Jones I. F., Zhou Z. -Z., Wang B., Liu F., 2011. Subsalt imaging for exploration, production, and development: A review. Geophysics 76(5), WB3—WB20.
Loinger E., Gaiser J. E., Lucini A., Prestori M., Walters R., 2002. 3D/4C Emilio-azimuth processing for anisotropy analysis. 64th EAGE Conference: Expanded Abstracts. Paper F-23.
Ma X., Wang B., Reta-Tang C., Whiteside W., Li Z., 2011. Enhanced prestack depth imaging of wide-azimuth data from the Gulf of Mexico: A case history. Geophysics 76(5), WB79—WB86.
Martin M. A., Davis T. L., 1987. Shear-wave birefringence: A new tool for evaluating fractured reservoirs. The Leading Edge 6(1), 22—28.
Mueller M. C., 1992. Using shear waves to predict lateral variability in vertical fracture intensity. The Leading Edge 11(2), 29 — 35.
Reta-Tang С., Simmons J., Whiteside W., Cai J., CampR., He Y., 2011. A case study: improved subsalt imaging through TTI model building and imaging of a WAZ survey in the Gulf of Mexico. 81st SEG Meeting: Expanded Abstracts. P. 3943—3947.
Shatilo A. P., Bansal R., Hefti J., Rochette C., 2012. Piceance 3C 3D survey — processing of converted-wave data in an area with azimuthal anisotropy. 74th EAGE Conference: Expanded Abstracts. Paper AO39.
Shen H., Chen G., Li T., 2012. Salt emplacement-induced azimuthal anisotropy in Garden Banks, Gulf of Mexico. 82nd SEG Meeting: Expanded Abstracts. P. 1—5.
Stewart R. R., Gaiser J. E., Brown R. J., Lawton D. C., 2003. Converted-wave seismic exploration: Applications. Geophysics 68(1), Expanded Abstracts 40—57.
Swanston A. M., Mathias M. D., Barker C. A., 2011. Wide-azimuth TTI imaging at Tahiti: Reducing structural uncertainty of a major deepwater subsalt field. Geophysics 76(5), WB67—WB78.
Thomas M., Mothi S., McGill P., 2012. Improving subsalt images using tilted-orthorhombic RTM in Green Canyon, Gulf of Mexico. 82nd SEG Meeting: Expanded Abstracts. P. 1—5.
Thomsen L., 1995. Elastic anisotropy due to aligned cracks in porous rock. Geophys. Prosp. 43(6), 805—829.
Thomsen L., 1986. Weak elastic anisotropy. Geophysics 51(10), 1954—1966.
Vestrum R., 2002. 2D and 3D anisotropic depth migration case histories. CSEG Recorder (5), 31—32.
Vestrum R. W., Lawton D. C., Schmid R., 1999. Imaging structures below dipping TI media. Geophysics 64(4), 1239—1246.
Vestrum R., Vermeulen P., 2004. Sideslip and smear beneath dipping transversely isotropic strata. 74th SEG Meeting: Expanded Abstracts. P. 175—178.
Vigh D., Kapoor J., Moldoveanu N., Li H., 2011. Breakthrough acquisition and technologies for subsalt imaging. Geophysics 76(5), WB41—WB51.
Wang B., Kim Y., Mason C., Zeng X., 2008. Advances in velocity model-building technology for subsalt imaging. Geophysics 73(5), VE173—VE181.
Wang B., Mason C., Guo M., Yoon K., Cai J., Ji J., Li Z., 2009. Subsalt velocity update and composite imaging using reverse-time migration based delayed-imaging-time scan. Geophysics 74(6), WCA159—WCA167.
Woodward M., Nichols D., Zdraveva O., Whitfield P., Johns T., 2008. A decade of tomography. Geophysics 73(5), VE5—VE11.
Wu Q., Li Y., Li Z., 2013. Improved subsalt imaging of full azimuth data with tilted orthorhombic PSDM. 83rd SEG Meeting: Expanded Abstracts. P. 3810—3814.
Zhang H., Zhang Y., 2008. Reverse time migration in 3D heterogeneous TTI media. 78th SEG Meeting: Expanded Abstracts. P. 2196—2200.
Zhang Y., Zhang H., Zhang G., 2011. A stable TTI reverse time migration and its implementation. Geophysics 76(3), WA3—WA11.
Zhou Z.-Z., Howard M., Mifflin C., 2011. Use of RTM full 3D subsurface angle gathers for subsalt velocity update and image optimization: Case study at Shenzi field. Geophysics 76(5), WB27—WB39.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).