Velocity models of the upper mantle of the continental and oceanic rifts


  • V. V. Gordienko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • L. Ya. Gordienko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine



continents, oceans, upper mantle, velocity models, deep-seated processes


The 1-D velocity models of longitudinal seismic waves distribution for the upper mantle of the continent rift systems which directly border with the mid-oceanic ridges (MOR) are constructed. A difference in the models between the named types of structures is established. Near the continents (but located on the oceanic crust) MOR velocity sections do not practically differ from those established on the oceans. The maximum speed anomalies are presented here. Under continental rift systems, the anomaly is less, in some cases because of the presence of arrays not covered by rifting processes within them, or the processes take place at untypical conditions. Velocity models corresponding to schemes of deep-seated processes on the advection-polymorphic hypothesis are constructed. Their comparison with experimental data (in part, according to the literature data) has been carried out. Their consistency is established.


Andiyeva T. A., 2008. Tectonic position and the basic structure of the Laptev Sea. Neftegazovaya geologiya. Teoriya i praktika 3(1), 1—28 (in Russian).

Belyaevsky N. A., 1981. The structure of the Earth’s continental crust according to geological and geophysical data. Moscow: Nedra. 432 p. (in Russian).

Butsenko V. V., 2006. Seismostratigraphic dating of the main tectonic events in the Arctic Ocean. Geofizicheskiy vestnik (11), 8—16 (in Russian).

East African rift system, 1974. Vol. III. Ed. V. V. Belousov. Moscow: Nauka, 288 p. (in Russian).

Genshaft Yu. S., Saltykovsky A. Ya., 2000. Cenozoic volcanism of Mongolia. Russian Journal of Earth Sciences 2(2), (in Russian).

Gibscher A. A., 2009. The composition and structure of the Ordovician lithospheric mantle of Western Sangilen (Central Asian folded belt) according to the data on the study of mantle xenoliths from the camptonite dikes of the Agardag alkaline-basaltoid complex: Author’s abstract. dis. cand. geol.-min. sci. Novosibirsk: NSU, 24 p. (in Russian).

Glebovitsky V. A., Nikitina L. P., Khiltova V. Ya., 2001. Thermal state of the mantle underlying the Precambrian and Phanerozoic structures (according to garnet-orthopyroxene thermobarometry of xenoliths of garnet peridotites in kimberlites and alkaline basalts). Fizika Zemli (3), 3—25 (in Russian).

Glebovitsky V. A., Nikitina L. P., Khiltova V. Ya., 2003. Thermal regimes in the lower crust from garnet-orthopyroxene thermobarometry of lower crust xenoliths in kimberlites and alkaline basalts. Fizika Zemli (12), 72—87 (in Russian).

Gontovaya L. I., Gordienko V. V., 2006. Deep processes and geophysical models of the mantle of Eastern Kamchatka and Kronotskii Bay. Geologiya i poleznyye iskopayemyye Mirovogo okeana (2), 107—121 (in Russian).

Gordienko V. V., 2014. About PT conditions in magmatic foci of the Earth’s mantle. Geofizicheskiy zhurnal 36(6), 28—57 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2015. Velocity model of the upper mantle under the island arcs and coast ridges of the Pacific Ocean. Geologiya i poleznyye iskopayemyye Mirovogo okeana (3), 69—81 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2016a. Velocity model of the upper mantle under the mid-ocean ridges. Geologiya i poleznyye iskopayemyye Mirovogo okeana (1), 33—42 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2012. Velo¬city section for the upper mantle beneath the Aleutian, Kurile and Japanese island arcs. Geologiya i poleznyye iskopayemyye Mirovogo okeana (3), 37—46 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2016b. Velo¬city profiles for the upper mantle beneath oceanic trenches. Dopovid: Nan Ukrainy. (4), 62—68 (in Russian).

Gramberg I. S, Demenitskaya R. M, Secretov S. B., 1990. The system of riftogenic grabens of the Laptev Sea shelf as a missing link in the rift belt of the Gakkel—Mom rift ridge. Doklady AN SSSR (3), 689—694 (in Russian).

Grachev A. F., 1996. The main problems of the newest tectonics and geodynamics of northern Eurasia. Fizika Zemli (12), 5—36 (in Russian).

Drachev S. S., 2000. Tectonics of the rift system of the Laptev Sea bed. Geotektonika (6), 43—58 (in Russian).

Zhao D., Piraino F., Liu L., 2010. Structure and Dynamics of the Mantle under Eastern Russia and Adjacent Regions. Geologiya i geofizika 51(9), 1188—1203 (in Russian).

King F., 1961. Geological development of North America. Moscow: Foreign Literature Publishing House, 301 p. (in Russian).

Magmatic rocks. Vol. 4. Acidic and medium-sized rocks, 1987. Ed. V. V. Yarmolyuk, V. I. Kovalenko. Moscow: Nauka, 375 p. (in Russian).

Milanovskiy E. E., 1983. Riftogenesis in the history of the Earth. Moscow: Nedra, 280 p. (in Russian).

Milanovskiy E. E., Koronovskiy N. V., 1973. Orogenic volcanism and tectonics of the Alpine belt of Eurasia. Moscow: Nedra, 279 p. (in Russian).

Mordvinova V. V, Kobelev M. M, Trusov A. V, Khritova M. A, Kobeleva E. A, Lukhneva O. F., 2016. The deep structure of the transition zone the Siberian Platform—the Central Asian mobile belt according to teleseismic data. Geodinamika i tektonofizika (1), 85—103 (in Russian).

Nazarova Z. A., Droznina S. Ya., Senyukov S. L., Droznin D. V., 2010. Determination of the earthquake hypocenters in Kamchatka region. In: Problems of complex geophysical monitoring the Russian Far East. Petropavlovsk-Kamchatsky: Publishing house FEB RAS, P. 363—366 (in Russian).

Nikishin A. M., Petrov E. I., Malyshev N. A., 2017. Tectonic structure and geological history of the Arctic Ocean in the Mesozoic and Cenozoic. Materials XLIX tectonic meeting. Vol. 2. Moscow: GEOS, P. 37—39 (in Russian).

Report «Development of scientific bases for complex seismic monitoring system in the Kuril-Kamchatka region», 2008. Сhief L. I. Lobkovskiy. Moscow: IO RAS, 95 p. (in Russian).

Saltykova A. K., 2008. Material composition, thermal and oxidation-reduction state of the upper mantle of the Baikal-Mongolian region. Author’s abstract. dis. cand. geol.-min. sci. St. Petersburg: Publishing of the St. Petersburg State University, 23 p. (in Russian).

Tarakanov R. Z., 2006. Velocity models and P-wave travel time curves for the Far East region. Vestnik DVO RAN (1), 81—95 (in Russian).

Khain V. E., 1979. Regional geotectonics. Non-Alpine Asia and Australia. Moscow: Nedra, 357 p. (in Russian).

Achauer U., Masson F., 2002. Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities. Tectonophysics 358(1-4), 17—37. doi: 10.1016/S0040-1951(02)00415-8.

Ashwal L., Burke K., 1989. African lithospheric structure, volcanism and topography. Earth Planet Sci. Lett. 96, 8—14.

Feng M., Lee S., Assumpcao M., 2007. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J. Geophys. Res. 112. B04312. doi: 10.1029/2006JB004449.

Glahn A., Granet M. and the Rhine Graben Teleseismic Group, 1993. Southern Rhine Graben: small-wavelength tomographic study and implications for the dynamic evolution of the graben. Geophys. J. Int. 113, 399—418.

Gordienko V., 2016a. Deep-seated processes in the tectonosphere of continental rifts. NCGT Journal (3), 361—388.

Gordienko V., 2016b. Deep-seated processes in the tectonosphere of oceans. NCGT Journal (4), 553—581.

Gordienko L., Gordienko V., 2016. P-wave velocities in the upper mantle beneath oceans. NCGT Journal (3), 389—405.

Kaeser B., Kalt A., Pettke T., 2006. Evolution of the lithospheric mantle beneath the Marsabit volcanic field (Nortern Kenya): Constraints for textural, PT and geochemical studies on xenoliths. J. Petrol. 47(11), 2149—2184. doi:10.1093/petrology/egl040.

Koulakov I., Kaban K, Tesauro M., Сloetingh S., 2009., P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophys. J. Int. 179, 345—366. doi: 10.1111/j.1365-246X.2009.04279.x.

Koulakov I., Bushenkova N., Burov E., Cloetingh S., El Khrepy S., Al-Arifi N., 2016. Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion. Tectonophysics 667, 176—188. doi: 10.1016/j.tecto.2015.11.022.

Mooney W., Prodehl C., Pavlenkova N., 2002. Seismic velocity structure of the continental lithosphere from controlled source data. International handbook of earthquake and engineering seismology. v.81a. P. 887—910.

Nixon P. (ed.), 1983. Mantle Xenoliths. Publisher: John Wiley & Sons, Ltd., 820 p.

Olsen K. (ed.), 1995. Continental Rifts: Evolution, Structure and Tectonics. Amsterdam, Elsevier, 492 p.

Ritter J., 2011. A mantle plume below the Eifel volcanic fields, Germany. Earth Pla¬net. Sci. Lett. 186(1), 7—14. doi:10.1016/S0012821X (01)00226-6.

Sobolev S., Zeyen H., Stoll G., Werling F., Altherr R., Fuchs K., 1996. Upper mantle temperatures from teleseismic tomography of the French Massif Central. Earth Planet. Sci. Lett. 139, 147—163.

Walck M., 1985. The upper mantle beneath the north-east Pacific rim: a comparison with Gulf of California. Geoph. J. Roy. Astron. Soc. 81, 243—276.

Zhao D., Lei J., Inoue T., Yamada Y., Gao S., 2006. Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett. 243, 681—691. doi:10.1016/j.epsl.2006.01.033.



How to Cite

Gordienko, V. V., & Gordienko, L. Y. (2017). Velocity models of the upper mantle of the continental and oceanic rifts. Geofizicheskiy Zhurnal, 39(6), 20–40.