The inverse problem of the gravitational field of planets as a physical problem

Authors

  • Yu. A. Tarakanov Shmidt Institute of Physics of the Earth, RAS, Russian Federation
  • O. V. Karagios National Institute of Aviation Technologies, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v34i1.2012.116576

Abstract

A key feature of the new physical method of interpretation of the Earth's gravity field is determination of the sequence of discrete characteristics of density structures - the mass moments with respect to local rectangular coordinate system. Information about these structures is extracted by separate portions for which purpose the data on the geometry of the gravitational field is also delivered by certain portions. At first, by solving the inverse problem one determines the mean smoothed geometric figure of the source, the normal density heterogeneity. As a two-dimensional normal heterogeneity, we choose a spherical cap, and as a three-dimensional one - a difference spherical sector and a difference of two spherical sectors. To specify a three-dimensional heterogeneity, one needs knowledge of six moments and six field elements along a great-circle arc. In the present paper we reveal the dependence of the solution to inverse problem of the potential on the number of harmonics K + 1 in Legendre series. The moments are calculated by solving the inverse problem of the potential. In the present paper we reveal the dependence of the solution to inverse problem of the potential on the number of harmonics K + 1 in Legendre series. The highest power K in these series was equal to 180, 16, 8, 4, 2. For the most difficult variant of field interpretation - spherical sectors of the Earth's inner core, the angular radii were equal to 1 °, 5 °, 15 °, 30 °, 90 °. Due to anomalies smoothing because of remoteness of the structures from the Earth's surface, the field of sectors is the same for K equal to 180, 16, 8. Therefore, to solve the inverse problem of the potential for sectors with linear radius equal to 1215 km, it is sufficient to measure only nine harmonics. The errors in computing the moments from six field elements are smaller by a factor of 100 than those found from three field elements. It was previously shown that the errors of the determining the moments of mantle structures by six elements are smaller by a factor of 10. To determine the geometric shape and size of the inner core sectors it is not necessary to launch a race after measurements of a large number of spherical harmonics in models of the Earth's gravity field.

References

Антонов В.А., Тимошкова Е.И., Холшевников К.В. Введение в теорию ньютоновского потенциала. - Москва: Наука, 1988. - 272 с.

Дубошин Г.Н. Небесная механика. Основные задачи и методы. - Москва: Наука, 1968. - 800 с.

Дубошин Г.Н. Теория притяжения. - Москва: Физматгиз, 1961. - 288 с.

Тараканов Ю.А., Камбаров Н.Ш., Приходько В.А. Зависимость интерпретации гравитационных аномалий Марса от сжатия его нормальной фигуры // Изв. вузов. Геодезия и аэрофотосъемка. - 1998. - № 3. - С. 70-79.

Тараканов Ю.А., Камбаров Н.Ш., Приходько В.А. Интерпретация гравитационных аномалий Венеры // Косм. исследования. - 1984. - 22, № 4. - С. 617-621.

Тараканов Ю.А., Камбаров Н.Ш., Приходько В.А. Оценка мощности литосферы Венеры по ее гравитационному полю // Астроном. журн. - 1989. - 66, № 1. - С. 120-125.

Тараканов Ю.А., Камбаров Н.Ш., Трубицын В.П., Приходько В.А. Отклонение от гидростатического равновесия Земли и Луны // Физика Земли. - 1985. - № 8. - С. 3-27.

Anderson D.L. A new look at the inner core of the Earth // Nature (London). - 1983. - 302, № 194. - P. 660.

Sjogren W.L., Ananda M., Williams B.G., Bikkeland P.W., Esposito P.S., Wimberly R.N., Ritke S.J. Venus gravity fields // Ann. Geophys. - 1981. - 37, № 1. - P. 179-184.

Tarakanov Yu.A., Cherevko T.N. Large-scale density heterogeneities in the mantle // Phys. Earth Planet. Inter. - 1981a. - 25, № 4. - P. 390-395.

Tarakanov Yu.A., Cherevko T.N. Thermal nature of the source of the Indian gravity anomaly // J. Volcanology and Geothermal Res. - 1981b. - 10, № 4. - P. 293-298.

Tarakanov Yu.A., Cherevko T.N., Karagioz O.V. The interpretation of the major nonhydrostatic anomalies of the Earth // Phys. Earth Planet. Int. - 1983. - 31, № 1. - P. 54-58.

Tarakanov Yu.A., Karagioz O. V. Analytical and numerical solutions of a new problem of gravitational potential theory: the inverse problem of moments // Gravitation and Cosmology. - 2007 a. - 13, № 3 (51). - P. 223-232.

Tarakanov Yu.A., Karagioz O.V. Joint numerical solution of two inverse problems of gravitational potential // Gravitation and Cosmology. - 2007b. - 13, № 4 (52). - P. 312-320.

Tarakanov Yu. A., Karagioz O. V. Numerical interpretation of the gravitational field of density heterogeneities of the Earth's inner core using models // Gravitation and Cosmology. - 2008. - 14, № 4. - P. 376-385.

Tarakanov Yu.A., Karagioz O. V., Kudriavitsky M.A. Solution of the inverse problem for the gravitational field from the potential and its five derivatives at one point // Gravitation and Cosmology. - 2007. - 13, № 2 (50). - P. 151-162.

Tarakanov Yu.A., Karagioz O.V., Kudriavitsky M.A. Unambiguous numerical solution of the direct and inverse problems of the gravitational potential using models // Gravitation and Cosmology. - 2003. - 9, № 3 (35). - P. 214-226.

Williams B.G., Mottinger N.A. Venus Gravity Field: Pioneer Venus Orbiter Navigation Results // Icarus. - 1983. - 56, № 3. - P. 578-589.

Published

2012-02-01

How to Cite

Tarakanov, Y. A., & Karagios, O. V. (2012). The inverse problem of the gravitational field of planets as a physical problem. Geofizicheskiy Zhurnal, 34(1), 32–49. https://doi.org/10.24028/gzh.0203-3100.v34i1.2012.116576

Issue

Section

Articles