Melting under the conditions of the upper mantle
DOI:
https://doi.org/10.24028/gzh.0203-3100.v33i4.2011.116899Abstract
Modern petrological models describe the melting process as thermodynamically balanced. It has been shown in the work that initial melting is possible at the depth not less than 220 km. Phase diagrams plotted according to the results of experimental studies on melting of mantle lerzolite, demonstrate the effects unallowable for the process, which progress under balanced conditions. For example, in different experiments difference of temperatures at the beginning of the process, composition of the melt and degree of melting (under the same pressure) for the samples with close resemblance of composition has been fixed. Reduction of T interval between solidus and liquidus with pressure increase is observed in all experiments. Suggestion has been substantiated in the article that in case of Р~3 GPa dramatic change of behavior (the character of interactions, directions of the progress of reactions) of the system crystal-melt, and the melting process itself is accompanied by increase of oxidation potential as a result of emanation of free oxygen. The higher is the pressure, the more intense is the process. Non-silicate chemically active components are produced. They interact selectively with lherzolite crystals. Composition of new increments of the melt depends on the composition of the first portions of liquid. In the proposed description the melting under mantle PT-conditions is not only a phase transition but also the beginning of a chain of physical-chemical processes accompanied by emanation of active components (including non-silicate fluids), their impact on crystal lattices of minerals and combining into new compounds. In the process of their interaction with crystal lattices of minerals under PT-conditions of the mantle electrochemical system is produced behavior of which is far from balanced. Description of the melting, that is proceeding under the pressure 7 GPa, with the help of phase reactions is ineligible because it must include formation (transformation) of deep fluid and its selective interaction with lherzolite crystals.References
Гордиенко В. В. Адвекционно-полиморфная гипотеза процессов в тектоносфере. - Киев: Корвін пресс, 2007. - 172 с.
Гордиенко В. В., Гордиенко И. В. Гипотетические тепловые модели и данные геотермометров // Доп. НАН України. - 2005. - № 3. - С. 104-110.
Кадик А. А., Луканин О. А., Портнягин А. Л. Магмообразование при восходящем движении мантийного вещества: температурный режим и состав расплавов, образующихся при адиабатической декомпрессии ультрабазитов мантии // Геохимия. - 1990. - № 9. - С. 1263-1276.
Коваленко В. И., Наумов Б. В., Гирнис А. В., Дорофеева В. Л., Ярмолюк В. В. Оценка средних содержаний Н 2 О, Cl, F, S в деплетированной мантии на основе составов расплавных включений закалочных стекол срединно-океанических хребтов // Геохимия. - 2006. - № 3. - С. 243-266
Коржинский Д. С. Теоретические основы анализа парагенезисов минералов. - Москва: Наука, 1973. - 288 с.
Кутас Р. И., Чекунов А. В., Лялько В. И., Митник М. М. Термодинамическая модель эволюции астенолитов // Геофиз. журн. -1993. - 15, -№ 4. - С. 3-11.
Мюллер Р., Саксена С. Химическая петрология. - Москва: Мир, 1980. - 518 с.
Николис Г., Пригожин И. Познание сложного. Введение. - Москва: Мир, 1990. - 344 с.
Пальянов Ю. Н., Сокол А. Г., Соболев Н. В. Экспериментальное моделирование мантийных алмазообразующих процессов // Геология и геофизика. - 2005. - 46, № 12. - С. 1290-1303.
Пуртов В. К., Анфилогов В. Н., Егорова Л. Г. Взаимодействие базальта с хлоридными растворами и механизм образования кислых расплавов // Геохимия. - 2002. - № 10. - С. 1084-1097.
Рингвуд А. Е. Состав и петрология мантии Земли. - Москва: Недра, 1981. - 584 с.
Рябчиков И. Д. Флюидный массоперенос и мантийное магмаобразование // Вулканология и сейсмология. - 1982. - № 5. - С. 3-9.
Рябчиков И. Д., Гирнис А. В. Происхождение низкокальциевых кимберлитовых магм // Геология и геофизика. - 2005. - 46, № 12. - С. 1223-1233.
Рябчиков И. Д., Орлова Г. П., Коваленко В. И., Чопоров Д. Я., Соловова И. П., Муравицкая Г. Н. Экспериментальное изучение взаимодействия флюида со слюдистым шпинелевым лерцолитом при высоких температурах и давлениях // Изв. АН СССР. Сер. геол. - 1983. - № 3. - С. 38-46.
Соловьева Л. В., Егоров К. Н., Маркова М. Е., Харькив А. Д., Пополитов К. Э., Баранкевич В. Г. Мантийный метасоматизм и плавление в глубинных ксенолитах трубки Удачная, их возможная связь с алмазо- и кимберлитообразованием // Геология и геофизика. - 1997. - 38, № 1. - С. 172-193.
Украинский щит (геофизика, глубинные процессы) / Под ред. В. В. Гордиенко. - Киев: Корвін пресс, 2005. - 210 с.
Усенко О. В. Глубинные процессы образования расплавов в тектоносфере: Автореф. дис. … д-ра геол. наук. - Киев, 2008. - 41 с.
Физическая химия / Под ред. К. С. Краснова. - Москва: Высшая школа, 1982. - 687 с.
Флюиды и окислительно-восстановительные равновесия в магматических системах / Отв. ред. А. А. Кадик. - Москва: Наука, 1991. - 256 с.
Baker M. B., Stolper E. M. Determining the compositions of high-pressure mantle melts using diamond aggregates // Geochim. Cosmochim. Acta. - 1994. - 58. - P. 2811-2827.
Bell D. R., Rossman G. R. Water in Earts mantle: The role of nominally anhydrous minerals// Science. - 1992. - 255. - P. 1391-1397.
Boyd F. R. A pyroxene geotherm // Geochim. Cosmochim. Acta. - 1973. - 37. - P. 2533-2546.
Brey P. G., Bulatov V. K., Girnis A. V., Lahaye Y. Experimental melting of carbonated peridotite at 6-10 GPa // J. Petrol. - 2008. - 49. - P. 797-821.
Dawson J. B. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, Northern Tanzania // J. Petrol. - 2002. - 43. - P. 1749-1777.
Girnis A. V., Brey G. P., Ryabchikov I. D. Origin of Group 1A kimberlites: Fluid- saturated melting experiments at 45-55 kbar // Earth Planet. Sci. Lett. - 1995. - 134. - P. 283-296.
Green D. H., Ringwood A. E. Fractionation of basalt magmas at high pressures // Nature. - 1964. - 201. - P. 1276-1279.
Gudfinnsson G. H., Presnal D. C. Continuоus gradations among primary carbonatic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa // J. Petrol. - 2005. - 46. - P. 1645-1659.
Gudfinnsson G. H., Presnal D. C. Melting relations of model lherzolite in the system CaO-MgO- Al-SiO at 2,4-3,4 and the generation of komatiites // J. Geophs. Res. - 1996. - 101. - P. 27701-27709.
Inoue T. Effect of water on melting phase relations and melt composition in the system Mg SiO - MgSiO -Н О up to 15 GPa // Phys. Earth Planet. Int. - 1994. - 85. - P. 237-263.
Lesher C. E., Pickering-Witter J., Baxter G., Walter M. Melting of garnet peridotite: Effects of capsules and thermocouples, and implications for the highpressure mantle solidus // Amer. Miner. J. - 2003. - 88. - P. 1181-1189.
Luth R. W. Mantle Volatites - Distribution and Consequences // The Mantle and Core. - Oxford: Elsevier Ltd., 2005. - P. 319-362.
Presnal D. C., Gudfinnsson G. H., Walter M. G. Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa // Geochim. Cosmochim. Acta. - 2002. - 66. - P. 2073-2090.
Scarfe C. M., Mysen B. O., Rai C. S. Invariant melting behavior of mantle material: partial melting of two lherzolite nodules // Carn. Inst. Wash. - 1979. - P. 498-501.
Schrauder M., Navon V. Hуdrous and carbonatic mantle fluids in hydrous diamonds from Jwaneng, Botswana // Geochim. Cosmochim. Acta. - 1994. - 58. - P. 761-771.
Takahashi E. Melting of a dry peridotite KLB-1 up to GPa implications on the origin of peridotite upper mantle // J. Geophys. Res. -1986. - 91. - P. 9367-9382.
Walter M. J. Melt Extraction and Compositionаl Variability in Mantle Lithospere // The Mantle and Core. - Oxford: Elsevier Ltd., 2005. - P. 363-394.
Walter M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere // J. Petrol. - 1998. - 39. - P. 29-60.
Wyllie P. J., Ryabchikov I. D. Volatile components, magmas, and critical fluids in upwelling mantle // J. Petrol. - 2000. - 41. - P. 1195-1205.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).