Recent and paleo-stresses at the northern margin of the Black Sea and the Crimea Mountain in Meso-Cenozoic—Quarter (according to mechanisms of earthquakes foci and field tectonophysical data)

Authors

  • A. Murovskaya S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • J.-C. Hippolyte Aix-Marseille Université, France
  • Ye. Sheremet Université Nice Sophia Antipolis, France
  • T. Yegorova S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i1.2018.124013

Keywords:

the Crimea, the Black Sea, mechanisms of earthquakes foci, stress field, deformational regime, kinematic analysis, Cenozoic compression

Abstract

Recent stress fields at the northern margin of the Black Sea have been characterized on the base of 32 mechanisms of the earthquakes foci. Orientations of compression axes in the foci give evidence that present-day tectonic process takes place under conditions of compression and transpression. For 13 mechanisms located within the band between the southern cost of the Crimea and the base of the continental slope regional stress field has been estimated, which reflects deformational regime of horizontal stress in northwest—southeast direction. The results of specification of paleostresses fields and deformation regimes have been presented according to field tectonophysical observations in 105 sites. Interpretation has been fulfilled within the limits of two generalized stages: extension in the Early Cretaceous and compression in the Cenozoic—Quarter. Stress fields of inverse, nappe and strike-slip types have been attributed to the stage of Cenozoic compression. Generalized paths of compression have been plotted, which form fan-like pattern within the arc-like sector of the South Coast of the Crimea from cape Meganom to cape Ayu-Dag and change their direction from north—east to west—east. Averaged stress fields have been calculated, which are of inverse type in Sudak-Feodosian zone and are represented by strike-slip types for the central and western parts of the Mountain Crimea (MC). The southwestern part of the MC is characterized by strike-slip-type stress field with northwest—northeast direction of the compression axis. The stage of Cretaceous extension is characterized by stress fields of normal type. The southwestern part of MC is characterized by north-north-east—north-north-west trend of extension and for the central part of MC the north-east—south-west direction of extension has been obtained.

References

Afanasenkov A. P., Nikishin A. M., Obukhov A. N., 2007. Geological structure and hydrocarbon potential of the East-Black Sea region. Moscow: Na-uchnyy Mir, 172 p. (in Russian).

Balakina L. M., Vvedenskaya A. V., Golubeva I. V., Misharina L. A., Shirokova E. I., 1972. The field of elastic stresses of the Earth and the mechanism of foci of earthquakes. Moscow: Nauka, 192 p. (in Russian).

Baranova E. P., Yegorova T. P., Omelchenko V. D., 2008. Reinterpretation of seismic materials of DSS and gravity modeling along the profiles 25, 28 and 29 in the Black Sea and the Azov Sea. Geofizicheskiy zhurnal 30(5), 1—10 (in Russian).

Byzova S. L., 1980. Some issues of tectonics of the Mountainous Crimea. Vestnik Moskovskogo universiteta. Ser. 4. Geologiya (6), 15—25 (in Russian).

Volfman Yu. M., 2015. Deformation regimes and kinematic conditions of modern tectonic faulting within the limits of the Mountain Crimea. 2. Geofizicheskiy zhurnal 37(1), 100—120. (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v37i1.2015. 111328.

Gintov O. B., 2005. Field tectonophysics and its application for the studies of deformations of the Earth’s crust of Ukraine. Kiev: Feniks, 572 p. (in Russian).

Gintov O. B., Volfman Yu. M., Kolesnikova E. Ya., Murovskaya A. V., 2014. Tectonophysical interpretation of earthquake focal mechanisms of the Zagros system. Geodinamika i tektonofizika 5(1), 305—319 (in Russian). doi: 10.5800/GT-2014-5-1-0129.

Gobarenko V. S., Murovskaya A. V., Yegorova T. P., Sheremet E. E., 2016. Contemporary conflict processes on the northern outskirts of the Black Sea. Geotektonika (4), 68—87 (in Russian). doi: 10.7868/S0016853X16040020.

Gonchar V., 2015. On substantiation of mechanism of lateral extrusion of the crust of the Mountain Crimea. Geofizicheskiy zhurnal 37(4), 145—150 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v37i4.2015.111135.

Gonchar V. V., 2013. Collisional nature of the Crimean orogen — the experience of the finite element method. Geofizicheskiy zhurnal 35(6), 148—164 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116526.

Kostrov B. V., 1974. Seismic moment, earthquake energy and seismic flow of mountain masses. Proceedings of the USSR Academy of Sciences. Izvestiya AN SSSR. Fizika Zemli (1), 23—40 (in Russian).

Mileev V. S., Rozanov S. B., Baraboshkin E. Yu., Shalimov I. V., 1998. Peculiarities of internal deformations of allochthons in the Mountainous Crimea. Doklady Akademii nauk 358(2), 233—235 (in Russian).

Muratov M. V. (ed.), 1969. Geology of the USSR. Vol. VIII. Crimea. Part 1. Geological description. Moscow: Nedra, 576 p. (in Russian).

Murovskaya A. V., 2012. Stress fields and deformation modes of the Western Mountainous Crimea in the Alpine stage of tectogenesis according to tectonophysical data: Dis. ... cand. geol. and min. sci. Kiev, 146 p. (in Russian).

Murovskaya A., Ippolit J.-C., Sheremet E., Yegorova T., Volfman Yu., Kolesnikova K., 2014. Deformational structures and stress fields of the south-western Crimea in the context of the evolution of Western Black Sea basin. Geodynamika (2), 53—68 (in Russian).

Osokina D. N., Fridman V. N., 1987. Investigation of the laws of the structure of the stress field in the vicinity of a shear discontinuity with friction between the banks. In: Fields of stresses and deformations in the Earth’s crust. Moscow: Nauka, P. 74—119 (in Russian).

Patalaha E. I., Gonchar V. V., Senchenkov I. K., Chervinko Î. P., 2003. Indenter mechanism in the geodynamics of the Crimean-Black Sea region. Kiev: Emko, 226 p. (in Russian).

Pustovitenko B. G., Eredzhepov E. E., 2017. Focal parameters of earthquakes in the Crimean-Black Sea region for 2016. Scientific notes of the Vernadsky Crimean Federal University. Geography. Geology 4(4), 36—48 (in Russian).

Rebetskiy Yu. L., 2007. Tectonic stresses and strength of mountain massifs. Moscow: Nauka, 406 p. (in Russian).

Tugolesov D. A., Gorshkov A. S., Meysner L. B., Solovyev V. V., Khakhalev V. I., 1985. Tectonics of the Mesozoic-Cenozoic deposits of the Black Sea basin. Moscow: Nedra, 215 p. (in Russian).

Yudin V. V., 2011. Geodynamics of the Crimea. Simferopol: Diaypi, 335 p. (in Russian).

Bott M. H. P., 1959. The mechanics of oblique slip faulting. Geol. Mag. (96), 109—117.

Byerlee J. D., 1978. Friction of Rocks. Pure Appl. Geophys. 116, 615—626.

Delvaux D., Sperner B., 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. In: New insights into structural interpretation and modeling. Geol. Soc. London. Spec. Publ. 212, 75—100.

Dinu C., Wong H. K., Tambrea D., Matenco L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410(1—4), 417—435. https://doi.org/10.1016/j.tecto.2005.04.012.

Espurt N., Hippolyte J. C., Kaymakci N., Sangu E., 2014. Lithospheric structural control on inversion of the southern margin of the Black Sea Basin, Central Pontides, Turkey. Lithosphere 6(1), 26—34. http://doi.org/10.1130/L316.1.

Görür N., 1997. Cretaceous syn- to post-rift sedimentation on the southern continental margin of the Western Black Sea Basin. In: Robinson A. G. (ed.). Regional and petroleum geology of the Black Sea and surrounding region. AAPG Memoir. 68, P. 227—240.

Finetti I., Bricchi G., Del Ben A., Pipan M., Xuan Z., 1988. Geophysical study of the Black Sea. Bollettino di Geofisica Teorica ed Applicata XXX(117-118), 197—324.

Hippolyte J. C., Espurt N., Kaymakci N., Sangu E., Müller C., 2016. Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey). Int. J. Earth Sci. 105(1), 81—106. doi: 10.1007/s00531-015-1170-6.

Hippolyte J. C., Müller C., Kaymakci N., Sangu E., 2010. Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In: M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, V. Starostenko (eds). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol. Soc. London Spec. Publ. 340, 113—136. http://doi.org/10.1144/SP340.7.

Khriachtchevskaia O., Stovba S., Stephenson R., 2010. Cretaceous-Neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. In: M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, V. Starostenko (eds). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol. Soc. London Spec. Publ. 340, 137—157. doi:10.1144/SP340.8.

Munteanu I., Matenco L., Dinu C., Cloetingh S., 2011. Kinematics of back-arc inversion of the Western Black sea Basin. Tectonics 30, TC5004. doi: 10.1029/2011TC002865.

Nikishin A. M., Okay A. I., Tüysüz O., Demirer A., Amelin N., Petrov E., 2015a. The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Mar. Pet. Geol. (59), 638—655.https://doi.org/10.1016/j.marpetgeo.2014.08.017.

Nikishin A. M., Okay A. I., Tüysüz O., Demirer A., Amelin N., Petrov E., 2015b. The Black Sea basins structure and history: new model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Mar. Pet. Geol. (59), 656—670. https://doi.org/10.1016/j.marpetgeo.2014.08.018.

Nikishin A. M., Wannier M., Alekseev A. S., Almen-diger O. A., Fokin P. A., Gabdullin R. R., Khudoley A. K., Kopaevich L. F., Mityukov A. V., Petrov E. I., Rubtsova E. V., 2017. Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. In: M. Sosson, R. Stephenson, Sh. Adamia (eds). Tectonic Evolution of the Eastern Black Sea and Caucasus. Geol. Soc. London Spec. Publ. 428, 241—264.

Okay A. I., Nikishin A. M., 2015. Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int. Geol. Rev. 57(5—8), 1051—1076.http://dx.doi.org/10.1080/00206814.2015.1010609.

Popadyuk I. V., Stovba S. M., Khriachtchevskaia O. I., 2013. The New Geological map of the Crimea Mountains by SPK — Geoservice as a new approach to understanding the Black Sea Region. Abstracts of Darius Programme, Eastern Black Sea — Caucasus Workshop, 24—25 June, 2013, Tbilisi, Georgia, P. 48—50.

Robinson A., Spadini G., Cloetingh S., Rudat J., 1995. Stratigraphic evolution of the Black Sea inferences from basin modelling. Mar. Pet. Geol. 12(8), 821—835.

Saintot A., Angelier J., Chorowicz J., 1999. Mechanical significance of structural patterns identified by remote sensing studies: a multiscale analysis of tec-tonic structures in Crimea. Tectonophysics 313(1-2), 187—218. doi: 10.1016/S0040-1951(99)00196-1.

Sheremet Y., Sosson M., Müller C., Gintov O., Murovskaya A., Yegorova T., 2016a. Key problems of stratigraphy in the Eastern Crimea Peninsula: some insights from new dating and structural data. In: M. Sosson, R. Stephenson, Sh. Adamia (eds). Tectonic Evolution of the Eastern Black Sea and Caucasus. Geol. Soc. London Spec. Publ. 428, 265—305.

Sheremet Y., Sosson M., Ratzov G., Sydorenko G., Voitsitskiy Z., Yegorova T., Gintov O., Murovskaya A., 2016b. An offshore-onland transect across the north-eastern Black Sea basin (Crimean margin): Evidence of Paleocene to Pliocene two-stage compression. Tectonophysics 688, 84—100. doi: 10.1016/j.tecto.2016.09.015.

Starostenko V. I., Sosson M., Farfulyak L., Gintov O. B., Yegorova T., Murovskaya A., Sheremet Ye., Legostaeva O., 2017. Deep crustal structure of the transition zone of the Scythian Plate and the East European Platform (DOBRE-5 profile): consequences of the Alpine tectonic evolution. Geofizicheskiy zhurnal 39(4), 119—121.

Vavrychuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 199, 69—77. doi: 10.1093/gji/ggu224.

Yegorova T., Gobarenko V., 2010. Structure of the Earth’s crust and upper mantle of the West- and East-Black Sea Basins revealed from geophysical data and its tectonic implications. In: M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, V. Starostenko (eds). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol. Soc. London Spec. Publ. 340, 23—42. doi: 10.1144/SP340.3.

Zonenshain L. P., Le Pichon X., 1986. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic. Tectonophysics 123(1), 181—211. doi: 10.1016/0040-1951(86)90197-6.

Published

2018-03-01

How to Cite

Murovskaya, A., Hippolyte, J.-C., Sheremet, Y., & Yegorova, T. (2018). Recent and paleo-stresses at the northern margin of the Black Sea and the Crimea Mountain in Meso-Cenozoic—Quarter (according to mechanisms of earthquakes foci and field tectonophysical data). Geofizicheskiy Zhurnal, 40(1), 44–69. https://doi.org/10.24028/gzh.0203-3100.v40i1.2018.124013

Issue

Section

Articles