From global tectonics to global geodynamics
DOI:
https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147475Keywords:
global tectonics, global geodynamics, heat balance of the Earth, geoneutrinos, heat flow at the core—mantle boundaryAbstract
Observations suggest that global (plate) tectonics operates on the Earth. The most characteristic features of the global tectonics are ocean floor spreading in mid-ocean ridges and subduction in deep-sea trenches. These processes imply the existence of mantle flow. However, within the framework of the plate tectonics, it is impossible to build a consistent quantitative theory of mantle convection because one cannot answer the question of where the tectonic plate “terminates”. From a mathematical point of view, the difficulty of global tectonics is that there are no boundary and initial conditions that would allow one to consider the evolution of some isolated part of the planet (e. g., the upper mantle). Therefore, to obtain a physically justified answer to the questions about the causes and energy sources of mantle motions, it is necessary to consider an evolution of the planet as a single whole. This formulation of the problem leads to the global geodynamics. Unlike the global tectonics, which in fact ignores the existence of the Earth’s core, for the global geodynamics the liquid outer and solid inner core, as well as the processes at the boundary between them and at the boundary between the core and the mantle, which decisively influence the mantle dynamics, are the main objects of the study. In this review, we confine ourselves to the global heat balance of the Earth. In the coming years, the results of the geoneutrino experiment will make it possible to obtain a reliable estimate of the total rate of radiogenic heat production in the Earth and to estimate the heat flow from the core to the mantle. Even this alone will significantly narrow the choice of models describing processes in the core. An ascertainment of the temperature at the inner/outer core interface and an elucidation of the mixing nature in the outer core will allow one to reduce an uncertainty of the temperature at the base of the mantle and to formulate a boundary condition problem for the mantle flow dynamics. Thus, a bridge from global geodynamics to global tectonics will be thrown and the conceptions of the latter will be put on a firm physical basis.
References
Aryasova, O. V., & Khazan, Ya. M. (2013a). Interaction of mantle convection with the lithosphere and the origin of kimberlites. Geofizicheskiy zhurnal, 35(5), 150—171. https://doi. org/10.24028/gzh.0203-3100.v35i5.2013. 116445 (in Russian).
Aryasova, O. V., & Khazan, Ya. M. (2013b). “Clifford’s Rule” and the geodynamics of kimberlite magmatism. Geofizicheskiy zhurnal, 35(6), 101—113. https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116453 (in Russian).
Gintov, O. B., & Starostenko, V. I. (2018). Introduction. In Essays on geodynamics of Ukraine (pp. 11—16). Kiev: LLC “Predpriyatiye “VI EN EY”” (in Russian).
Landau, L. D., & Lifshitz, E. M. (1986). Hydrodynamics. Moscow: Nauka (in Russian).
Agostini, M., Appel, S., Bellini, G., Benziger, J., Bick, D., Bonfini, G., ... Zuzel, G. (2015). Spectroscopy of geo-neutrinos from 2056 days of Borexino data. Physical Review D, 92(3), 031 101. doi: 10.1103/PhysRevD.92.031101.
Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457—473. https://doi.org/10. 1007/s00190-011-0444-4.
Anufriev, A. P., Jones, C. A., & Soward, A. M. (2005). The Boussinesq and anelastic liquid approximations for convection in the Earth’s core. Physics of the Earth and Planetary Interiors, 152(3), 163—190. doi: 10.1016/j.pepi. 2005.06.004.
Aryasova, O. V., & Khazan, Y. M. (2016). A new approach to computing steady-state geotherms: The marginal stability condition. Tectonophy-sics, 693, 32—46. http://dx.doi.org/10.1016/j.tecto.2016.10.014.
Bebout, G. E., Scholl, D. W., Stern, R. J., Wallace, L. M., & Agard, P. (2017). Twenty years of subduction zone science: Subduction top to bottom 2 (ST2B-2). GSA Today, 28(2), 4—10. doi: 10.1130/GSATG354A.1.
Becker, T. W., & Boschi, L. (2002). A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1), 1003. doi: 10.129/2001GC000168.
Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen, T., & Tauxe, L. (2015). Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature, 256, 245—248. doi: 10.1038/nature15523.
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027. doi: 10.1029/2001GC 000252.
Buffett, B. A. (2015). Core-mantle interactions. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 8, pp. 213—224). Oxford: Elsevier. doi: 10.1016/B978-0-444-53802-4.00148-2.
Bullen, K. E. (1949). Compressibility-Pressure Hypothesis and the Earth’s Interior. Geophysical Journal International, 5(9), 335—368. doi: 10.1111/j.1365-246X.1949.tb02952.x.
Davies, J. H., & Davies, D. R. (2010). Earth’s surface heat flux. Solid Earth, 1(1), 15—24. doi: 10.5194/se-1-5-2010.
Deguen, R. (2012). Structure and dynamics of Earth’s inner-core. Earth and Planetary Science Letters, 333-334, 211—225. doi: 10.1016/j.epsl.2012.04.038.
De Koker, N., Neumann, G. S., & Vlček, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proceedings of the National Academy of Sciences of the USA, 109(11), 4070—4073. doi: 10.1073/pnas.111184 1109.
De Paor, D. G. (2017). A grand tour of the ocean basins. Eos, 98. https://doi.org/10.1029/2017 EO081093.
Dietz, R. S. (1961). Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854—857. doi: 10.1038/190854a0.
Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50, RG3007. doi: 10.1029/2012RG000400.
Dziewonski, A. M. (1984). Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research, 8, 5929—5952. doi: 10.1029/JB089iB07p05929.
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297—356. doi: 10.1016/0031-9201(81)90046-7.
Dziewonski, A. M., & Romanowicz, B. A. (2015). Deep Earth Seismology: An Introduction and Overview. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 2, pp. 1—28). Oxford: Elsevier. doi: 10.1016/B978-0-444-53802-4.00001-4.
ETOPO5: Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. (1988). NOAA, National Center for Environmental In-formation. Retrived from https://www.ngdc. noaa.gov/mgg/global/etopo5.HTML.
Fischer, R. A. (2016). Melting of Fe Alloys and the Thermal Structure of the Core. In H. Terasaki, & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 3—12). Washington, DC: AGU.
Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., & Kaneda, K. (2011). The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science, 234, 1240. doi: 10.1126/science.1211554.
Goes, S., Eakin, C. M., & Ritsema, J. (2013). Lithospheric cooling trends and deviations in oceanic PP-P and SS-S differential traveltimes. Journal of Geophysical Research. Solid Earth, 118, 996—1007. doi: 10.1002/jgrb.50092.
Grand, S. P. (2002). Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 360, 2475—2491. doi: 10.1098/rsta.2002.1077.
Hasterok, D. (2013). A heat flow based cooling model for tectonic plates. Earth and Planetary Science Letters, 361, 34—43. doi: 10.1016/j.epsl.2012.10.036.
Heezen, B. C., Ewino, M., & Miller, E. T. (1953). Transatlantic profile of total magnetic intensity and topography Dakar to Barbados. Deep-Sea Research, 1(1), 25—33. doi: 10.1016/0146-6313(53)90006-9.
Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C., & Le Pichon, X. (1968). Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73, 2119—2136. doi: 10.1029/JB073i006p02119.
Hernlund, J. W., & McNamara, A. K. (2015). The core-mantle boundary region. In D. Bercovici, & G. Schubert (Eds.), Treatise on Geo-physics (Vol. 7-8, pp. 461—519). Oxford: Elsevier. doi: 10.1016/B978-0-444-53802-4.00 136-6.
Hess, H. H. (1962). History of ocean basins. In A. E. J. Engel, L. H. James, & B. F. Leonard (Eds.), Petrologic studies: A volume to honor of A. F. Buddington (pp. 599—620). New York: Publ. The Geological Society of America.
Hirth, G., & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In Eiler J. (Ed.), Inside the Subduction Factory. Geophysical Monograph (Vol. 138, pp. 83—105). Washington, DC: American Geophysical Union.
Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., … Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38(15), L00G05. doi: 10. 1029/2011GL048355.
Jones, C. A. (2015). Thermal and compositional convection in the outer core. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 8, pp. 115—159). Elsevier: Oxford.
Karato, S. (2008). Deformation of Earth Materials. Cambridge: Cambridge University Press.
Kaufmann, G., & Lambeck, K. 2002. Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. Journal of Geophysical Research, 107(B11), 2280. doi: 10. 1029/ 2001JB000941.
Kavner, A., & Rainey, E. S. G. (2016). Heat Transfer in the Core and Mantle. In H. Terasaki, & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 31—42). Washington, DC: AGU.
Kennett, B., Widiyantoro, S., & van der Hilst, R. (1998). Joint seismic tomography for bulk so-und and shear wave speed in the Earth’s mantle. Journal of Geophysical Research. Solid Earth, 103, 12469—12493. doi: 10.1029/98JB00150.
Kohlstedt, D. L., & Hansen, L. N. (2015). Constitutive Equations, Rheological Behavior, and Viscosity of Rocks. In G. Schubert (Ed.), Treatise on Geophysics (Vol.2, pp. 441—472). Ox-ford: Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00042-7.
Kustowski, B., Ekström, G., & Dziewonski, A. M. (2008). The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophysical Journal International, 174, 978—992. doi: 10.1111/j.1365-246X.2008.03865.x.
Lay, T., Hernlund, J. & Buffett, B. (2008). Core-mantle boundary heat flow. Nature Geoscience, 1, 25—32. doi: 10.1038/ngeo.2007.44.
Lay, T. (2015). Deep Earth Structure: Lower Mantle and D" Rocks. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 1, pp. 684—723). Oxford: Elsevier. doi: 10.1016/B978-0-444-538 02-4.00019-1.
Leyton, M., Dye, S., & Monroe J. (2017). Exploring the hidden interior of the Earth with directional neutrino measurements. Nature Communications, 8, 15989. doi: 10.1038/ncomms 15989.
Litasov, K. D., & Shatskiy, A. F. (2016). Composition of the Earth’s core: A review. Russian Geology and Geophysics, 57, 22—46. doi: 10.1016/j.rgg.2016.01.003.
Masters, G., Laske, G., Bolton, H., & Dziewonski, A. M. (2000). The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In S. Karato, A. Forte, R. Liebermann, G. Masters, & L. Stixrude (Eds.), Earth’s deep interior: mineral physics and tomography from the atomic to the global scale. Geophysical monograph (pp. 63—87). Washington, DC: AGU.
McCarthy, C., & Takei, Y. (2011). Anelasticity and viscosity of partially molten rock analog: Toward seismic detection of small quantities of melt. Geophysical Research Letters, 38, L18306. doi: 10.1029/2011GL048776.
McDonough, W. F. (2003). Compositional mo-del for the Earth's core. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on Geochemistry. The Mantle and the Core (Vol. 2, pp. 547—568). New York: Elsevier.
McKenzie, D. P. (1967). Some remarks on heat flow and gravity anomalies. Journal of Geophysical Research, 72, 6261—6273. https://doi.org/10.1029/JZ072i024p06261.
McKenzie, D. P. (1969). Speculations on the consequences and causes of plate motions. Geophysical Journal International, 18(1), 1—32. https://doi.org/10.1111/j.1365-246X.1969. tb00259.x.
Mouslopoulou, V., Oncken, O., Hainzl, S., & Nicol, A. (2016). Uplift rate transients at subduction margins due to earthquake clustering. Tectonics, 35, 2370—2384. doi: 10.1002/2016TC004248.
Müller, R. D., Sdrolias, M., Gaina, C., & Roest W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006. doi: 10.1029/2007GC001743.
Ni, S., Tan, E., Gurnis, M., & Helmberger, D. (2002). Sharp sides to the African superplume. Science, 296, 1850—1852. doi: 10.1126/scien ce.1070698.
Nimmo, F. (2002). Why does Venus lack magnetic field? Geology, 30, 987—990. doi: 10. 1130/0091-7613(2002)030<0987:WDVLAM> 2.0.CO;2.
Panet, I., Pollitz, F., Mikhailov, V., Diament, M., Banerjee, P., & Grijalva, K. (2010). Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake. Geochemistry, Geophysics, Geosystems, 11(6). doi: 10.1029/2009GC 002905.
Parsons, B., & Sclater, J. G. (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82, 803—827. https://doi.org/10.1 029/JB082i005p00803.
Pitman, W. C. III, & Heirtzler, J. B. (1966). Magnetic anomalies over the Pacific-Antarctic ridge. Science, 154, 1164—1171. doi: 10.1126/sci ence.154.3753.1164.
Plafker, G. (1965). Tectonic deformation associated with the 1964 Alaska earthquake. Science, 148, 1675—1687. doi: 10.1126/science. 148.3678.1675.
Plafker, G. (1969). Tectonics of the March 27, 1964, Alaska earthquake. U.S. Geological Survey Professional Paper 543-I. https://pubs.usgs. gov/pp/0543i/74 p.
Plafker, G. (1972). Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implication for Arc Tectonics. Journal of Geophysical Re-search, 77(5), 901—925. https://doi.org/10. 1029/JB077i005p00901.
Pozzo, M., Davies, C., Gubbins, D. & Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355—358. doi: 10.1038/nature11031.
Ritzwoller, M. H., Shapiro, N. M., & Zhong, S. J. (2004). Cooling history of the Pacific litho-sphere. Earth and Planetary Science Letters, 226, 69—84. doi: 10.1016/j.epsl.2004.07.032.
Ritsema, H. J., van Heijst, J. H., & Woodhouse, J. H. (1999). Complex shear velocity structure beneath Africa and Iceland. Science, 286, 1925—1928. doi: 10.1126/science.286.5446.1925.
Russel, C. T. (1993). Magnetic fields of terrestrial planets. Journal of Geophysical Research, 98, 18,681—18,695. doi: 10.1029/93JE00981/pdf.
Satake, K., & Atwater, B. F. (2007). Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annual Review of Earth and Planetary Sciences, 35, 349—374. doi: 10.1146/annurev.earth.35.031306.140302.
Sato, M. Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., & Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science, 232, 1395. doi: 10.1126/science.1207401.
Sleep, N. H. (1997). Lateral flow and ponding of starting plume material. Journal of Geophysical Research, 102, 10001—10012. doi: 10. 1029/97JB00551.
Stein, C. A., Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123—129. doi: 10.1038/359123a0.
Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J. P., Bock, Y., Sieh, K., … McCaffrey, R. (2006). Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature, 440, 46—50. doi: 10.1038/nature 04522.
Tackley, P. J. (2012). Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Science Reviews, 110, 1—25. doi: 10.1016/j. earscirev.2011.10.001.
Tkalčić, H. (2015). Complex inner core of the Earth: The last frontier of global seismology. Reviews of Geophysics, 53(1), 59—94. doi: 10. 1002/2014RG000469.
To, A., Romanowicz, B., Capdeville, Y., & Takeuchi, N. (2005). 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth and Planetary Science Letters, 233, 237—253. doi: 10.1016/j.epsl.2005.01.037.
Torsvik, T. H., Smethurst, M. A., Burke, K., & Steinberger, B. (2006). Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167, 1447—1460. doi: 10.1111/j.1365-246X.2006.03158.x.
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J., & Ashwal, L. D. (2010). Diamonds sampled by plumes from the core—mantle boundary. Nature, 466, 352—355. doi: 10.1038/nature09216.
Tsuchiya, T., Kawai, K., Wang, X., Ichikawa, H., & Dekura, H. (2016). Temperature of the lower mantle and core based on ab initio mineral physics data. In H. Terasaki, & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core (pp. 13—30). Washington, DC: AGU.
Van Schmus, W. R. (1995). Natural radioactivity of the crust and mantle. In T. J. Ahrens (Ed.), Global Earth Physics: A Handbook of Physical Constants (pp. 283—291). Washington, DC: AGU.
Vening Meinesz, F. A. (1962). Thermal convection in the Earth’s mantle. In S. K. Runcorn (Ed.), Continental Drift (pp. 145—176). New York: Academic Press.
Vening Meinesz, F. A. (1964). The Earth’s crust and mantle. Amsterdam: Elsevier.
Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947—949. doi: 10.1038/199947a0.
Wada, I., & King, S. (2015). Dynamics of subducting slabs: Numerical modeling and constraints from seismology, geoid, topography, geochemistry, and petrology. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 7, pp. 339—391). Oxford: Elsevier.
Wang, K. (2007). Elastic and Viscoelastic Models of Crustal Deformation, In T. H. Dixon, & J. C. Moore (Eds.), The Seismogenic Zone of Subduction Thrust Faults (pp. 540—575). New York: Columbia University Press. doi: 10.7312/dixo13866-017.
Wang, Y., & Wen, L. (2007). Geometry and P and S velocity structures of the “African Anomaly”. Journal of Geophysical Research, 112, B05313. doi: 10.1029/2006JB004483.
Watters, T. M., & Nimmo, F. (2009). The tectonics of Mercury. In T. R. Watters, & R. A. Schultz (Eds), Planetary Tectonics (pp. 15—80). Cambridge: Cambridge University Press.
Wegener, A. (1912). The origin of continents. International Journal of Earth Sciences, 91, 4—17. doi: 10.1007/s00531-002-0271-1.
Wegener, A. (1929). Die Entstehung der Kontinente und Ozeane. Braunschweig: Friedr. Vieweg & Sohn Akt. Ges. https://ia800502.us. archive.org/11/items/Entstehung1929/Ents tehung1929.pdf.
Zweck, C., Freymueller, J. T., & Cohen, S. C. (2002). Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake. Journal of Geophysical Research, 107(B4), 2064. doi: 10.1029/2001 JB000409.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).