3D crustal velocity and VP/VS structures beneath Southeast Anatolia and their geodynamic implications
DOI:
https://doi.org/10.24028/gzh.0203-3100.v41i2.2019.164460Keywords:
Southeast Anatolia, crustal structure, seismic tomography, seismic velo¬city structure, VP/VS RatioAbstract
We applied a seismic tomography method to arrival time data generated by local crustal earthquakes in Southeast Anatolia to study the shallow, three-dimensional, velocity and
VP/VS structures beneath the area. Many of the previous seismological studies of the region are of a regional, or even global, scale. A total of 2150 carefully-selected events generating 13690 and 12560 P- and S-wave arrival times are finally used in the tomographic inversion. Results of the checkerboard resolution test imply that the obtained velocity and VP/VS anomalies are reliable features. In addition, hit count maps indicate that all parts are hit by an adequate number of rays to retrieve the crustal velocity structure. Strong lateral crustal heterogeneities are revealed beneath southeast Anatolia with many lower-than-average velocity anomalies. The low velocity anomalies are imaged especially near the active fault segments. In addition, high VP/VS ratios are mapped at most crustal layers especially at depths of 10 and 22 km which are consistent with the distribution of ophiolite belts. The high VP/VS zones are induced by the possible existence of over-pressurized fluids in the crust and perhaps the uppermost mantle. The existence of these fluids along with the intense tectonic activity could trigger large crustal earthquakes along the western segment of the East Anatolian fault zone. Although may occur in high velocity zones, the majority of the large crustal earthquakes are distributed near zones of average velocity/high VP/VS anomalies. Such mapped velocity and VP/VS zones are in agreement with many previous geophysical investigations beneath southeast Anatolia such as low Pnand Sn velocities, high Sn attenuation, high heat flow, and low Lg Q0 values. Results beneath this region of the Anatolian Plateau are also similar to those observed beneath other continental plateaus such as the Tibet and point to a hot, partially-molten upper mantle.
References
Al-Damegh, K., Sandvol, E., Al-Lazki, A., & Barazangi, M. (2004). Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian plateau and surrounding regions. Geophysical Journal International, 157(2), 775―795. https://doi.org/10.1111/j.1365-246X. 2004.02246.x.
Al-Damegh, K., Sandvol, E., & Barazangi, M. (2005). Crustal structure of the Arabian plate: new constraints from the analysis of teleseismic receiver functions. Earth and Planetary Science Letters, 231(3-4), 177―196. doi: 10.1016/j.epsl.2004.12.020.
Al-Lazki, A. I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International, 158(3), 1024―1040. doi: 10.1111 /j.1365-246X.2004.02355x.
Al-Lazki, A. I., Seber, D., Sandvol, E., Turkelli, N., Mohamad, R., & Barazangi, M. (2003). Tomographic Pn velocity and anisotropy struc¬¬ture beneath the Anatolian plateau (eastern Turkey) and surrounding regions. Geo¬phy¬sical Research Letters, 30(24), 8043. doi: 10.1029/ 2003GL017391.
Bağci, U., Parlak, O., & Hцck, V. (2005). Whole rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan Ocean. Mineralogical Magazine, 69(1), 53―76. https://doi.org/10.1180/0026461056910234.
Bağcı, U., Parlak, O., & Hцck, V. (2006). Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (Southern Turkey). Geological Journal, 41(2), 193―219. https://doi.org/10.1002/gj.1035.
Bağci, U., Parlak, O., & Hцck, V. (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, 17, 43―71.
Bakırcı, T., Yoshizawa, K., & Цzer, M. F. (2012). Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography. Geophysical Journal International, 190(2), 1058―1076. doi: 10.1111/j.1365-246X.2012.05526.x.
Bariş, Ş., Nakajima, J., Hasegawa, A., Honkura, Y., Ito, A., & Ьзer, S. B. (2005). Three-dimensional structure of VP, VS, and VP/VS in the upper crust of the Marmara region, NW Turkey. Earth, Planets and Space, 57(11), 1019―1038. https://doi.org/10.1186/BF03351882.
Barka, A. A., & Reilinger, R. (1997). Active tectonics of the eastern Mediterranean region deduced from GPS, neotectonic, and seismicity data. Annali di Geofisica, 40, 587―610.
Bektaş, Ц. (2013). Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data. Physics of the Earth and Planetary Interiors, 221, 27―37. http://dx.doi.org/10.1016/j.pepi.2013.06.003.
Bektaş, Ц., Ravat, D., Bьyьksaraз, A., Bilim, F., & Ateş, A. (2007). Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164(5), 975―998. doi: 10.1007/s00024-007-0196-5.
Bilim, F. (2011). Investigation of the Galatian volcanic complex in the northern central Turkey using potential field data. Physics of the Earth and Planetary Interiors, 185(1-2), 36―43. doi: 10.1016 /j.pepi.2011.01.001.
Bozkurt, E., & Koзyiğit, A. (1996). The Carova basin: an active negative flower structure on the Almus fault zone, a splay fault system of the North Anatolian Fault Zone. Tectonophysics, 265(3-4), 239―254. https://doi.org/10.1016/S0040-1951(96)00045-5.
Christensen, N. I. (1966). Elasticity of ultrabasic rocks. Journal of Geophysical Research, 71(24), 5921―5931. https://doi.org/10.1029/JZ071i024p05921
Christensen, N. I. (1978). Ophiolites, seismic velo¬ci¬ties and oceanic crustal structure. Tecto¬no¬phy¬sics, 47(1-2), 131―157. https://doi.org/10. 1016/0040-1951(78)90155-5.
Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139―3156. https://doi.org/10.1029/95JB03446.
Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261―276. doi: 10.1093/gji/ggv141.
Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J. (1973). Plate tectonics and the evolution of the Alpine system. Geological Society America Bulletin, 84(10), 3137―3180. https://doi.org/10.1130/0016-7606(1973) 84<3137:PTATEO>2.0.CO;2.
Dewey, J., & Şengцr, A. (1979). Aegean and surroundings regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society America Bulletin, 90(1), 84―92. https://doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2.
Dilek, Y., & Flower, M. F. J. (2003). Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. In: Dilek, Y. & Robinson, P. T. (Eds.), Ophiolites in Earth History (Vol. 218, pp. 43―68). Geological Society of London. Special Publication. https://doi.org/10.1144/GSL.SP.2003.218.01.04.
Erduran, M., Зakir, Ц., Tezel, T., Şahin, Ş., & Alptekin, Ц. (2007). Anatolian surface wave evaluated at GEOFON station ISP Isparta, Turkey. Tectonophysics, 434(1-4), 39―54. https://doi.org/10.1016/j.tecto.2007.02.005.
Gans, C. R., Beck, S. L., Zandt, G., Biryol, C. B., & Цzacar, A. A. (2009). Detecting the limit of slab break-off in central Turkey: new high-re¬solution Pn tomography results. Geophysical Jour¬nal International, 179(3), 1566―1572. doi: 10.1111/j.1365-246X.2009.04389.x.
Gцk, R., Sandvol, E., Turkelli, N., Seber, D., & Ba¬ra¬zangi, M. (2003). Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophysical Research Letters, 30(24), 8042. doi: 10.1029/2003GL018020.
Gцk, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent–continent collision zone: eastern Turkey. Geophysical Journal International, 169(3), 1079―1088. doi: 10.1111/j.1365-246X.2006.03288.x.
Hearn, T. M., & Ni, J. (1994). Pn velocities beneath continental collision zones: the Turkish-Iranian Plateau. Geophysical Journal International, 117(2), 273―283. https://doi.org/10.1111/j.1365-246X.1994.tb03931.x.
Herrin, E. (1968). Seismological tables for P-phases. Bulletin of the Seismological Society of America, 60, 461―489.
Horasan, G., Gьlen, L., Pinar, A., Kalafat, D., Ozel, N., Kuleli, H. S., & Isikara, A. M. (2002). Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bulletin of the Seismological Society of America, 92, 322―329. htpp://doi.org/10.1785/0120000813.
Horen, H., Zamora, M., & Dubuisson, G. (1996). Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 23(1), 9―12. https://doi.org/10.1029/95GL03594.
Jaffey, N., Robertson, A., & Pringle, M. (2004). Latest Miocene and Pleistocene ages of faulting, determined by 40Ar⁄39Ar single-crystal dating of air-fall tuff and silicic extrusives of the Erciyes Basin, central Turkey: evidence for intraplate deformation related to the tectonic escape of Anatolia. Terra Nova, 16, 45―53. doi: 10.1111/j.13653121.2003.00526.x.
Janik, T. (2010). Upper lithospheric structure in the central Fennoscandian Shield: constraints from P- and S-wave velocity models and VP/VS ratio distribution of the BALTIC wide-angle seismic profile. Acta Geophysica, 58(4), 543―586. doi: 10.2478/s11600-010-0002-0.
Janik, T., Kozlovskaya, E., & Yliniemi, J. (2007). Crust-mantle boundary in the central Fennoscandian shield: Constraints from wide-angle P- and S-wave velocity models and new results of reflection profiling in Finland. Journal of Geophysical Research: Solid Earth, 112(B4), B04302. doi: 10.1029/2006JB004681.
Janik, T., Kozlovskaya, E., Heikkinen, P., Yliniemi, J., & Silvennoinen, H. (2009). Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian shield) derived from P- and S- wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect. Journal of Geophysical Research: Solid Earth, 114(B6), B06308. doi: 10.1029/2008JB005689.
Jiang, G., Zhang, G., Zhao, D., Lьd, Q., Li, H., & Li, X. (2015). Mantle dynamics and Cretaceous magmatism in east-central China: Insight from teleseismic tomograms. Tectonophysics, 664, 256―268, http://dx.doi.org/10.1016/j.tecto.2015.09.019.
Karaoğlan, F., Parlak, O., Klцtzli, U., Koller, F., & Rızaoglu, T. (2013). Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geoscience Frontiers, 4(4), 399―408. http://dx.doi.org/10.1016/j.gsf.2012.11.011.
Kaviani, A., Sandvol, E., Bao, X., Rьmpker, G., & Gцk, R. (2015). The structure of the crust in the Turkish–Iranian Plateau and Zagros using Lg Q and velocity. Geophysical Journal International, 200(2), 1252―1266. doi: 10.1093/gji/ggu468.
Koulakov, I., Bindi, D., Parolai, S., Grosser, H., & Milkereit, C. (2010). Distribution of seismic velocities and attenuation in the crust beneath the North Anatolian Fault (Turkey) from local earthquake tomography. Bulletin of the Seismological Society of America, 100, 207―224. doi: 10.1785/0120090105.
Lee, W. H. K., & Lahr, J. C. (1972). HYP071: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. Open File Report, U. S. Geological Survey, 100 p.
Lei, J., & Zhao, D. (2007). Teleseismic evidence for a break-off subducting slab under eastern Turkey. Earth and Planetary Science Letters, 257(1-2), 14―28. doi: 10.1016/j.epsl.2007.02.011.
Mooney, W. D., Laske, G., & Masters, T. G. (1998). CRUST 5.1: A global crustal model at 5Ч5. Journal of Geophysical Research 103(B1), 727―747. https://doi.org/10.1029/97JB02122.
Mutlu, A. K., & Karabulut, H. (2011). Anisotro¬pic Pn tomography of Turkey and ad¬ja¬cent regions. Geophysical Journal International, 187, 1743―1758. doi: 10.1111/j.1365-246X.2011. 05235.x.
Nakamura, A., Hasegawa, A., Ito, A., Ьзer, B., Barış, Ş., Honkura, Y., Kono, T., Hori, S., Pektaş, R., Komut, T., Зelik, C., & Işıkara, A. M. (2002). P-wave velocity structure of the crust and its relationship to the occurrence of the İzmit, Turkey, earthquake and aftershocks. Bulletin of the Seismological Society of America, 92, 330―338.
Nocquet, J.-M. (2012). Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220―242. doi: 10.1016/j.tecto.2012. 03.037.
Цztьrk, S. (2011). Characteristics of seismic activity in the western, central and eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis. Acta Geophysica, 59(2), 209―238, doi: 10.2478/s11600-010-0050-5.
Цztьrk, S., & Bayrak, Y. (2012). Spatial variations of precursory seismic quiescence observed in recent years in the eastern part of Turkey. Acta Geophysica, 60(1), 92―118. doi: 10.2478/s11600-011-0035-z.
Parlak, O., Hцck, V., Kozlu, H., & Delaloye, M. (2004). Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geological Magazine, 141(5), 583―603. https://doi.org/10.1017/ S0016756804009458.
Parlak, O., Rızaoğlu, T., Bağcı, U., Karaoğlan, F., & Hцck, V. (2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473(1-2), 173―187. doi: 10.1016/j.tecto. 2008.08.002.
Paswan, A. K., Goyal, A., Kumar, R., & Borah, K. (2016). Crustal shear velocity structure beneath Cuddapah Basin, India. Geophys. Res. Abst. 18, EGU2016-PREVIEW.
Pasyanos, M. E., Matzel, E. M., Walter, W. R., & Rodgers, A. J. (2009). Broad-band Lg attenuation in the Middle East. Geophysical Journal International, 177(3), 1166―1176. doi: 10.1111/j.1365-246X.2009.04128.x.
Reilinger, R., & McClusky, S. (2011). Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International, 186(3), 971―979. doi: 10.1111/j.1365-246X.2011. 05133.x.
Reilinger, R. E., McClusky, S. C., Oral, M. B., King, W., & Toksцz, M. N. (1997). Global Positioning System measurements of present-day crustal movements in the Arabian-Africa-Eurasia plate collision zone. Journal of Geophysical Research: Solid Earth, 102(B5), 9983―9999. https://doi.org/10.1029/96JB03736.
Robertson, A., Ustaцmer, T., Parlak, O., Ьnlьgenз, U. C., Taslı, K., & İnan, N. (2006). The Berit transect of the Tauride thrust belt, S. Turkey: late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the southern Neotethys. Journal of Asian Earth Sciences, 27(1), 108―145. https://doi.org/10.1016/j. jseaes.2005.02.004.
Robertson, A. H. F., Parlak, O., Rızaoğlu, T., Ьnlьgenз, Ь., İnan, N., Taslı, K., & Ustaцmer, T. (2007) Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In: A. C. Ries, R. W. H. Butler, & R. H. Graham (Eds.), Deformation of Continental Crust (Vol. 272, pp. 231―270). Geological Society of London. Special Publication.
Rodgers, A. J., Ni, J. F., & Hearn, T. M. (1997). Propagation characteristics of short-period Sn and Lg in the Middle East. Bulletin of the Seismological Society of America, 87, 396―413.
Rotstein, Y. (1984). Counterclockwise rotation of the Anatolian block. Tectonophysics, 108(1-2), 71―91. https://doi.org/10.1016/0040-1951(84)90155-0.
Rotstein, Y., & Kafka, A. (1982). Seismotectonics of the southern boundary of Anatolia, eastern Mediterranean region: subduction, collision, and arc jumping. Journal of Geophysical Research: Solid Earth, 87(B9), 7694―7706. https://doi.org/10.1029/JB087iB09p07694.
Salah, M. K. (2017). Lithospheric structure of southeast Anatolia from joint inversion of local and teleseismic data. Studia Geophysica et Geodaetica, 61(4), 703―727. doi: 10.1007/s11200-016-1240-7.
Salah, M. K., Şahin, Ş., & Aydin, U. (2011). Seismic velocity and Poisson’s ratio tomography of the crust beneath east Anatolia. Journal of Asian Earth Sciences, 40(3), 746―761. doi 10.1016/j.jseaes.2010.10.021.
Salah, M. K., Şahin, Ş., & Destici, C. (2007). Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes. Journal of Seismology, 11(4), 415―432. doi: 10.1007/s10950-007-9062-2.
Salah, M. K., Şahin, Ş., & Soyuer, D. (2014a). Crustal velocity and Poisson’s ratio structures beneath northwest Anatolia imaged by seismic tomography. European International Journal of Science and Technology, 3(4), 133―157.
Salah, M. K., Şahin, Ş., &Topatan, U. (2014b). Crustal velocity and VP/VS structures beneath central Anatolia from local seismic tomography. Arabian Journal of Geosciences, 7(10), 4101―4118. doi: 10.1007/s12517-013-1038-7.
Sandvol, E., Al-Damegh, K., Calvert, A., Seber, D., Barazangi, M., Mohamad, R., Gцk, R., Turkelli, N., & Gьrbьz, C. (2001). Tomographic imaging of Lg and Sn propagation in the Middle East. Pure and Applied Geophysics, 158(7), 1121―1163. https://doi.org/10.1007/PL00001218.
Schmid, C., van der Lee, S., VanDecar, J. C., Engdahl, E. R., & Giardini, D. (2008). Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms. Journal of Geophysical Research, 113, B03306. doi: 10.1029/2005JB004193.
Schmincke, H.-U., Sumita, M., & the Paleovan scientific team. (2014) Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: Periodic (Nemrut) VS. episodic (Sьphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka. Journal of Volcanology and Geothermal Research, 285, 195―213. http://dx.doi.org/10.1016/j.jvolgeores.2014.08.015.
Şengцr, A. M. C. (1979). Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279, 590―593. https://doi.org/10.1038/279590a0.
Şengцr, A. M. C., Gцrьr, N., & Saroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: K. T. Biddle, & N. Christie-Blick (Eds.), Strike-slip Faulting and Basin Formation (Vol. 37, pp. 227―264). Soc. Econ. Paleontol. Mineral. Spec. Publ.
Tan, O., Papadimitriou, E. E., Pabucзu, Z., Karakostas, V., Yцrьk, A., & Leptokaropoulos, K. (2014). A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Agean Sea) areas. Acta Geophysica, 62(6), 1283―1309. doi 10.2478/s11600-013-0194-1.
Tatar, O., Piper, J. D. A., Park, R. G., & Gьrsoy, H. (1995). Palaeomagnetic study of block rotations in the Niksar overlap region of the North Anatolian Fault Zone, central Turkey. Tectonophysics, 244(4), 251―266. https://doi.org/10.1016/0040-1951(94)00241-Z.
Tatar, O., Piper, J. D. A., Gьrsoy, H., Heimann, A., & Koзbulut, F. (2004). Neotectonic deformation in the transition zone between the Dead Sea transform and the East Anatolian Fault Zone, southern Turkey: a paleomagnetic study of the Karasu rift volcanism. Tectonophysics, 385(1-4), 17―43. doi: 10.1016/j.tecto.2004.04.005.
Taymaz, T., Yılmaz, Y., & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction. In: T. Taymaz, Y. Yılmaz, & Dilek, Y. (Eds.), The Geodynamics of the Aegean and Anatolia (Vol. 291, pp. 1―16). Geological Society of London. Special Publication.
Tezel, T., Erduran, M., & Alptekin, Ц. (2007). Crustal shear wave velocity structure of Turkey by surface wave dispersion analysis. Annals of Geophysics, 50(2), 177―190.
Tsapanos, T. M., Bayrak, Y., Cinar, H., Koravos, G. Ch., Bayrak, E., Kalogirou, E. E., Tsapanou, A. V., & Vougiouka, G. E. (2014). Analysis of Largest Earthquakes in Turkey and its Vicinity by Application of the Gumbel III Distribution. Acta Geophysica, 62(1), 59―82. doi: 10.2478/s11600-013-0155-8.
Warren, L. M., Beck, S. L., Biryol, C. B., Zandt, G., Ӧzacar, A. A., & Yang, Y. (2013). Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography. Geophysical Journal International, 194(3), 1941―1954. doi: 10.1093/gji/ggt210.
Wessel, P., & Smith, W. H. F. (1998). New improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Un., 79(47), 579―579. https://doi.org/10.1029/98EO00426.
Westaway, R. (1994). Present-day kinematics of the Middle East and Eastern Mediter- ranean. Journal of Geophysical Research, 99(B6), 12071―12090. doi: 10.1029/94JB00335.
Yolsal-Зevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536-537, 61―100. doi: 10.1016/j.tecto.2012.02.019.
Zhao, D. (2001). New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: a review. Island Arc, 10(1), 68―84. https://doi.org/10.1046/j.1440-1738.2001.00291.x.
Zhao, D., Hasegawa, A., & Horiuchi, S. (1992). Tomographic imaging of P- and S-wave velocity structure beneath northeastern Japan. Journal of Geophysical Research, 97(B13), 19909―19928. https://doi.org/10.1029/92JB00603.
Zhao, D., Hasegawa, A., & Kanamori, H. (1994). Deep structure of Japan subduction zone as derived from local, regional and teleseismic events. Journal of Geophysical Research, 99, 22313―22329. https://doi.org/10.1029/94JB01149.
Zhao, D., Tani, H., & Mishra, O. P. (2004). Crustal heterogeneity in the 2000 western Tottori earthquake region: effect of fluids from slab dehydration. Physics of the Earth and Planetary Interiors, 145(1-4), 161―177. https://doi.org/10.1016/j.pepi.2004.03.009.
Zhao, D., Yanada, T., Hasegawa, A., Umino, N., & Wei, W. (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190(2), 816―828. https://doi.org/10.1111/ j.1365-246X.2012.05550.x.
Zor, E., Sandvol, E., Xie, J., Tьrkelli, N., Mitchell, B., Gasanov, A. H., & Yetirmishli, G. (2007). Crustal attenuation within the Turkish plateau and surrounding regions. Bulletin of the Seismological Society of America, 97, 151―161. doi: 10.1785/0120050227.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).