Autonomous digital seismic stations SV
DOI:
https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177376Keywords:
autonomous seismic station, seismic monitoring, seismograms, geological structure, digital recordAbstract
Seismic exploration is one of the most informative geophysical methods. It gives thorough information on deep and spatial structure of the Earth using features of seismic waves propagation in geological layers with different physical properties. Wave field excited with seismic source propagates in space and time, therefore for its registration we need availability of many observation sites simultaneously resulting in considerable rise in prices cost of seismic information. In turn, absence of numerical seismic data renders impossible development of basic seismicity, seismic monitoring and long-term observation of seismically dangerous processes in big areas of man-made objects. The paper presents autonomous seismic stations developed at the Institute of Geophysics NAS of Ukraine. Universality of seismic stations allows their use for a wide range of seismic and seismological problems. Small weight and size make their transportation easier as well as their mounting in unequipped observation sites in boggy hard-to-reach areas. Long-continued registration of seismic information and big capacity of operative internal memory makes possible their use for passive long-term observations. Several variants of wireless connection have been realized in seismic stations for control of technical condition of the station, inspection of seismic record quality in real time and remote programming for alternation its working regime. Likewise historical review has been presented on development of autonomous seismic stations the most popular in Europe and North America used in large-scale international projects on studies of deep structure of the Earth during the latest 50 years. In addition up-to date passive and active seismic stations used in economic seismicity have been described.
References
Mishatkin, V. N. (2008). Modern trends in the development of equipment for seismic research. In Geophysical monitoring and seismic safety issues in the Russian Far East: Proc. of the regional scientific and technical conference (Petropavlovsk-Kamchatsky, November 11―17, 2007) (Vol. 2, pp. 131―134). Moscow-Obninsk: Publ. House Geophysical Survey RAS (in Russian).
Asudeh, I., Anderson, F., Parmelee, J., Vishnubhatla, S., Munro, P., & Thomas, J. (1992). A Portable Refraction Seismograph PRSl I. Geological Survey of Canada, Open File 2478. Lithoprobe Publication No 294.
Burg, K. E. (1941). Prospecting method and apparatus. Patent 2265513 A.
Dean, T., Tulett, J., & Barnwell, R. (2018). Nodal land seismic acquisition: The next generation. EAGE, 36(1), 47―52.
Exploring the Earth’s Crust: History and Results of Controlled-source Seismology. (2012). Publisher: The Geological Society of America Memoir, Claus Prodehl Geophysical Institute, University of Karlsruhe, Karlsruhe Institute of Technology, Karlsruhe, Germany Walter D. Mooney U.S. Geological Survey.
Gao, Z. (Ed.). (1998). Environmental Regulation of Oil and Gas. London: Kluwer Law International.
Grad, M., Gryn, D., Guterch, A., Janik, T., Keller, R., Lang, R., Lyngsie, S. B., Omelchenko, V., Starostenko, V. I., Stephenson, R. A., Stovba, S. M., Thybo, H., & Tolkunov, A. (2003). «DOBREfraction’99»—velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics, 371(1-4), 81―110. https://doi.org/10.1016/S0040-1951(03)00211-7.
Guterch, A., Grad, M., Keller, G. R., Posgay, K., Vozár, J., Špičák, A., Brückl, E., Hajnal, Z., Thybo, H., & Selvi, O. (2003). CELEBRATION 2000 seismic experiment. Studia Geophysica et Geodaetica, 47, 659―669. https://doi.org/10.1023/A:1024728005301.
Healy, J. H., Mooney, W. D., Blank, H. R., Gettings, M. E., Kohler, W. M., Lamson, R. J., & Leone, L. E. (1982). Saudi Arabian seismic deep-refraction profile. Final Proj. Rep., Saudi Arabian Deputy Minist. Miner. Resour., Open-File Rep., USGS OFR-02-37.
Hsiao, K. H., & Yan, H. S. (2009). The review of reconstruction designs of Zhang Heng’s seismoscope. Journal of Japan Association for Earthquake Engineering, 9(4). https://doi.org/10.5610/jaee.9.4_1.
Kendall, R. (2015). Cableless Seismic Acquisition. Tesla Exploration LTD, Calgary.
Keller, G. R., Karlstrom, K. E., Williams, M. L., Miller, K. C., Andronicos, C., Levander, A., Snelson, C., & Prodehl, C. (2005). The dynamic nature of the continental crust–mantle boundary: crustal evolution in the Southern Rocky Mountain region as an example. In: K. E. Karlstrom, & G. R. Keller (Eds.), The Rocky Mountain Region: An Evolving Lithosphere — Tectonics, Geochemistry, and Geophysics (pp. 403–420). Am. Geophys. Un. Monograph, Washington, D.C.
Prodehl, C., Kennett, B., Artemieva, I. M., & Thybo, H. (2013). 100 years of seismic research on the Moho. Tectonophysics, 609, 9―44. https://doi.org/10.1016/j.tecto.2013.05.036.
Prodehl, C., Mechie, J., Achauer, U., Keller, G. R., Khan, M. A., Mooney, W. D., Gaciri, S. J., & Obel, J. D. (1994). The KRISP 90 seismic experiment — a technical review. Tectonophysics, 236 (1-4), 33―60. https://doi.org/10.1016/0040-1951(94)90168-6.
Shave, D. G. (1982). Seismic group recorder system. Conference Society of Exploration Geophysicists, 45-46. https://doi.org/10.1190/1.1827090.
Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Šroda, P., Lysynchuk, D., Grad, M., Kovacs, I., Stephenson, R., Thybo, H., Artemieva, I. M, Omelchenko, V., Gintov, O., Kutas, R., Gryn, D., Guterch, A., Hegedus, E., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2013a). Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049―1072. doi:10.1016/j.tecto.2013.07.008.
Starostenko, V., Janik, T., Lysynchuk, D., Šroda, P., Czuba, W., Kolomiyets, K., Aleksandrowski, P., Gintov, O., Omelchenko, V., Komminaho, K., Guterch, A., Tiira, T., Gryn, D., Legostaeva, O., Thybo, H., & Tolkunov, A. (2013b). Mesozoic(?) lithosphere-scale buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile. Geophysical Journal International, 195(2), 740―766. https://doi.org/10.1093/gji/ggt292.
Starostenko, V., Janik, T., Stephenson, R., Gryn, D., Rusakov, O., Czuba, W., Šroda, P., Lysynchuk, D., Grad, M., Guterch, A., Flüh, E., Thybo, H., Artemieva, I., Tolkunov, A., Sydorenko, G., Omelchenko, V., Kolomiyets, K., Legostaeva, O., Dannowski, A., & Shulgin, A. (2016). DOBRE-2 WARR profile: the Earth’s crust across Crimea between the pre-Azov Massif and the northeastern Black Sea Basin. In: M. Sosson, R. A. Stephenson, & S. A. Adamia (Eds.), Tectonic Evolution of the Eastern Black Sea and Caucasus (Vol. 428, pp. 199―220). Geological Society, London, Special Publications. doi:10.1144/SP428.11.
Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Šroda, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212, 1932―1962. 10.1093/gji/ggx509.
Starostenko, V. I., Janik, T., Yegorova, T., Farfuliak, L., Czuba, W., Šroda, P., Lysynchuk, D., Thybo, H., Artemieva, I., Sosson, M., Volfman, Y., Kolomiyets, K., Omelchenko, V., Gryn, D., Guterch, A., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2015). Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the northwestern Black Sea and the Crimean Peninsula. Geophysical Journal International, 201, 406―428. doi:10.1093/gji/ggv018.
Wang, Z. D. (1963). Ke Ji Kao Gu Lun Cong. Beijing, China: Cultural Press (in Chinese).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Geofizicheskiy Zhurnal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).