Pripyat trough as a possible channel of mantle degassing: deep structure and position in the junction zone of Sarmatia and Fennoscandia

Authors

  • Т.P. Yegorova Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • A.V. Murovskaya Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215073

Keywords:

Sarmatia, Fennoscandia, Pripyat Trough, Korosten pluton, South Pripyat fault, magmatic chamber, mantle degassing

Abstract

The Pripyat Trough, representing the northwestern end of the Pripyat-Dnieper-Donetsk Basin, is located in the junction zone of the Precambrian terrains of Fennoscandia and Sarmatia, controlled by the Osnitsk-Mikashevichy Igneous Belt. The ancient tectonic suture was reactivated during subsequent episodes of Meso-Neoproterozoic and Devonian rifting. The lithosphere structure of the Pripyat Trough is generalized according to published geophysical data and new interpretation of the velocity-density model of the lithosphere structure on Eurobridge-97 profile is given. The structure of the lithosphere at the southern flank of the Pripyat Trough and the Korosten pluton, consisting of rapakivi granites — gabbro-anorthosites, is associated with the existence of a mantle magma chamber, inflow of mantle melts into the crust, partial melting, magmatic differentiation and transformation of the substance throughout the crust under the pluton. Within the Pripyat Trough, a special role belongs to the South Pripyat fault, which limits the Pripyat Trough from the south, and the Korosten pluton from the north, and is associated with an inclined seismic boundary (reflector) in the mantle. The South Pripyat fault, being a deep fault zone, controlled the intrusion of magmatic melts and mantle fluids throughout its evolution. At present it controls seismicity and, obviously, is a conduit for hydrocarbons and a mantle degassing channel. Significant features of the structure and evolution of Pripyat Trough are: (I) origination in an ancient zone of weakness that undergone repeated tectonic and magmatic activations, (II) position at the intersection of four major zones of heterogeneity: Osnitsk-Mikashevichy Igneous Belt of NE strike, N-S-trending Odessa—Gomel zone, W-E-oriented Brest—Pripyat, and the Dnieper—Donets Basin of the NW orientation, (III) the spatial relationship of the limiting listric faults with mantle heterogeneities; (IV) recent activation and confinement of hydrocarbon deposits to it. These criteria make it possible to consider the Pripyat Trough as a possible channel of mantle degassing.

References

Ayzberg, R.E., Garetskiy, R.G., & Sinichka, A.M. (1971). Sarmatian-Turan lineament of the earth’s crust. In Problems of theoretical and regional tectonics (pp. 41—51). Moscow: Nauka (in Russian).

Ayzberg, R.E., Aronov, A.G., Garetskiy, R.G., Karabanov, A.K., Safronov, O.N., Seroglazov, R.R., & Aronova, T.I. (2007). Seismotectonic zoning of the western part of the East European platform: in 2 books. Book 1: Earthquakes (pp. 368—381). Petrozavodsk: Published by the Karelian Scientific Center of the Russian Academy of Sciences (in Russian).

Ayzberg, R.E., & Starchik, T.A. (2007). Multiphase model of the Late Paleozoic geodynamics of the Pripyat paleorift. Article 1. Geodynamic factors of the manifestation of synrift horizontal and vertical movements. Litasfera, (2), 25—36 (in Russian).

Aksamentova, N.V. (2002). Magmatism and paleogeodynamics of the Early Proterozoic Osnitsko-Mikashevichsky volcanic belt. Minsk 175 p. (in Russian).

Astapenko, V.N., & Logvinov, I.M. (2014). Geoelectric model of consolidated Earth’s crust and upper mantle along the geotraverse Eurobridge-97. Geofizicheskiy zhurnal, 36(5), 143—155. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111575 (in Russian).

Bagdasarova, M.V. (2001). Features of fluid systems of oil and gas accumulation zones and geodynamic types of oil and gas fields. Geologiya nefti i gaza, (3), 50—56 (in Russian).

Belyavskiy, V.V., Burakhovich, T.K., Kulik, S.N., & Sukhoy, V.V. (2001). Electromagnetic methods in the study of the Ukrainian shield and the Dnieper-Donets depression. Kiev: Znannya, 227 p. (in Russian).

Bogdanova, S.V., Starostenko, V.I., Pashkevich, I.K., Gintov, O.B., Kuprienko, P.Ya., Kutas, R.I., Makarenko, I.B., & Tsvetkova, T.A. (2008). Long-living latitudinal fault zones in the lithosphere of western Sarmatia: The relationship of the surface structures with the deep structures of the earth’s crust. Materials of the XIV international conference (Pt. 1, pp. 66—69). Petrozavodsk: Published by the Karelian Scientific Center of the Russian Academy of Sciences (in Russian).

Burakhovich, T.K., Kulik, S.N., Logvinov, I.M., Pinchuk, A.P., & Tarasov, V.N. (1996). A geoelectric model of the tectonosphere of the Pripyat troug. Geofizicheskiy zhurnal, 18(5), 71—79 (in Russian).

Garetskiy, R.G. (2015). The evolution of platform areas. Litosfera, (1), 2—19 (in Russian).

Garetskiy, R.G., & Klushin, S.V. (1989). Listric faults in the Pripyat paleorift. Geotektonika, (1), 48—60 (in Russian).

Gintov, O.B. (2012). Precambrian of the Ukrainian Shield and plate tectonics. Geofizicheskiy zhurnal, 34(6), 2—21. https://doi.org/10.24028/gzh.0203-3100.v34i6.2012.116694 (in Russian).

Gordienko, V.V. (2011). Activization of the tectonosphere and hydrocarbon deposits. Geofizicheskiy zhurnal, 36(3), 75—101. https://doi.org/10.24028/gzh.0203-3100.v33i3.2011.116931 (in Russian).

Gordienko, V.V., Gordienko, I.V., Zav¬go¬rod¬naya, O.V., Kovachikova, S., Logvinov, I.M., Pek, J., Tarasov, V.N., & Usenko, O.V. (2006). Dnieper-Donets Basin (geophysics, deep processes). Kiev: Korvin press, 142 p. (in Russian).

Gribik, Y.G. (2004). The relationship between the oil content of the Pripyat Trough and the deep geological structure. Doklady NAN Belarusi, (5), 86—91 (in Russian).

Gubin, V.N. (2010). Satellite technology in geodynamics. Minsk: Minsktipproekt, 87 p. (in Russian).

Guzik, S.N. (2013). Geological structure and oil and gas prospects of the rocks of the crystalline basement and sedimentary cover of the lowered wings of the inconsistent deep faults of the Pripyat oil and gas basin. Glubinnaya neft, (4), 485—501 (in Russian).

Dmitrievskiy, A.N., & Valyaev, B.M. (Eds.). (2006). Genesis of hydrocarbon fluids and deposits. Moscow: GEOS, 315 p. (in Russian).

Yegorova, T.P., Starostenko, V.I., Kozlenko, V.G., & Uliniemi, Yu. (2003). The lithosphere of the Ukrainian shield and the Pripyat basin of the EUROBRIDGE’97 region according to gravity modeling. Geofizicheskiy zhurnal, 25(4), 26—38 (in Russian).

Kats, Ya.G., Poletaev, A.I., & Rumyantseva, E.F. (1986). The basics of Lineament Tectonics. Moscow: Nedra, 140 p. (in Russian).

Lukin, A.E., & Shestopalov, V.M. (2018). On the new geological paradigm for the tasks of regional geological and geophysical research. Geofizicheskiy zhurnal, 40(4), 3—72. https://doi. org/10.24028/gzh.0203-3100.v40i4.2018.140610 (in Russian).

Makhnach, A.S., Matveev, A.V., & Garetskiy, R.G. (Eds.). (2001). Geology of Belarus. Minsk: Published by the Institute of Geological Sciences of the National Academy of Sciences of Belarus, 815 p. (in Russian).

Pavlenkova, N.I. (2019). Structural features of continental and oceanic lithosphere and their nature. Geofizicheskiy zhurnal, 41(2), 3—57. https://doi.org/10.24028/gzh.0203-3100.v41i2.2019.164448 (in Russian).

Pashkevich, I.K., Orlyuk, M.I., & Lebed, T.V. (2014). Magnetic data, fault tectonics of consolidated Earth’s crust and oil-and-gas content of the Dnieper-Donetsk aulacogen. Geofizicheskiy zhurnal, 36(1), 64—80. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116150 (in Russian).

Sollogub, V.B., Sologub, N.V., & Chekunov, A.V. (1981). Sublateral faults in the crystalline substrate of the south of the East European platform. Doklady AN USSR. Ser. B, (5), 18—22 (in Russian).

Khain, V.E. (2000). Tectonics of continents and oceans. Moscow: Nauchnyy Mir, 606 p. (in Russian).

Chekunov, А.B. (1994). To the geodynamics of the Dnieper-Donetsk rift syneclise. Geofizicheskiy zhurnal, 16(3), 3—13 (in Russian).

Shestopalov, V.M., Lukin, A.E., Zgonnik, V.A., Makarenko, L.N., Larin, N.V., Boguslavskiy, A.S. Essays on the Earth degassing. Kiev: Ed. of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, 632 p. (in Russian).

Shcherbak, N.P. (2008). Geochronology of the Early Precambrian of the Ukrainian Shield. Proterozoic. Kiev: Naukova Dumka, 240 p. (in Russian).

Balling, N. (2000). Deep seismic reflection evidence for ancient subduction and collision zones within continental lithosphere of northwestern Europe. Tectonophysics, 329, 269—300. https://doi.org/10.1016/S0040-1951(00)00199-2.

Bogdanova, S.V. (1993). Segments of the East European Craton. In D.G. Gee & M. Eckholmen (Eds.), EUROPROBE in Jablonna 1991 (pp. 33—38). European Science Foundation—Polish Academy of Sciences.

Bogdanova, S.V., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L. & EUROBRIDGE and POLONAISE Working Groups. (2006). EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. In D.G. Gee & R.A. Stephenson (Eds.), European Lithosphere Dynamics (Vol. 32, pp. 599—625). Geol. Soc., London, Memoir. https://doi.org/10.1144/GSL.MEM.2006.032.01.36.

Bogdanova, S.V., Gintov, O.B., Kurlovich, D., Lubnina, N.V., Nilsson, M., Orlyuk, M.I., Pashkevich, I.K., Shumlyanskyy, L.V., & Starostenko, V.I. (2013). Late Palaeoproterozoic mafic dyking in the Ukrainian Shield (Volgo-Sarmatia) caused by rotations during the assembly of supercontinent Columbia. Lithos, 174, 196—216. https://doi.org/10.1016/j.lithos.2012.11.002.

Сhristensen, N.I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139—3156. https://doi.org/10.1029/95JB03446.

Gower, C.F., & Tucker, R.D. (1994). Distribution of pre-1400 Ma crust in the Grenwill province: implications for rifting in Laurentia-Baltica during geon 14. Geology, 22, 827—830. https://doi.org/10.1130/0091-7613(1994)022<0827:DOPMCI>2.3.CO;2.

Duchene, J.C., Auwera, J.V., Liégeiois, J.P., & Longhi, J. (1998).The crustal tongue melting model: phase diagram constraints on the origin of anorthosites and tectonic setting. Геофиз. журн., 20(4), 70—71.

EUROBRIDGE Seismic Working Group. (1999). Seismic velocity structure across the Fennoscandia — Sarmatia suture of the East European Craton beneath the EUROBRIDGE profile through Lithuania and Belarus. Tectonophysics, 314, 193— 217. https://doi.org/10.1016/S0040-1951(99)00244-9.

Funk, T., Louden, K.E., & Reid, I.D. (2000). Wide-angle seismic imaging of a Mesoproterozoic anorthosite complex: the Nain Plutonic Suite in Labrador, Canada. Journal of Geophysical Research: Solid Earth, 105(B11), 25693—25707. https://doi.org/10.1029/2000JB900237.

Juhlin, C., Stephenson, R.A., & Klushin, S. (1996). Reappraisal of deep seismic reflection Profile VIII across the Pripyat Trough. Tectonophysics, 268, 99—108. https://doi.org/10.1016/S0040-1951(96)00225-9.

Kozlovskaya, E., Janik, T., Yliniemi, J., Karataev, G., & Grad, M. (2004). Density-velocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the EUROBRIDGE’97 seismic profile and gravity data. Acta Geophysica Polonica, 52(4), 397—424.

Lefmann, A.K.B., & Thybo, H. (1998). Seismic evidence for underplating during formation of rapakivi granites around the Aland Islands. Геофиз. журн., 20(4), 93—95.

Pease, V., Daly, J.S., Elming, S.-Å., Kumpulainen, R., Moszydlowska, M., Puchkov, V., Roberts, D., Saintot, A., & Stephenson, R. (2008). Baltica in the Cryogenian, 850—630 Ma. Precambrian Research, 160, 46—65. https://doi.org/10.1016/j.precamres.2007.04.015.

Shumlyanskyy, L. (2014). Geochemistry of the Osnitsk-Mikashevichy volcanoplutonic complex of the Ukrainian shield. Geochemistry International, 52, 912—924. https://doi.org/10.1134/S0016702914110081.

Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Claesson, S., Ernst, R., Whitehouse, M., & Bilan, O. (2017). The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 292, 216—239. https://doi.org/10.1016/j.precamres.2017.02.009.

Sliaupa, S., Fokin, P., Lazauskiene, J., & Stephenson, R.A. (2006). The Vendian-Early Palaeozoic sedimentary basins of the East European Craton. In D.G. Gee, & R.A. Stephenson (Eds.), European Lithosphere Dynamics (Vol. 32. pp. 449—462). Geol. Soc., London, Memoir. https://doi.org/10.1144/GSL.MEM.2006.032.01.28.

Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Środa, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H. & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212, 1932—1962. https://doi.org/10.1093/gji/ggx509.

Stephenson, R.A., Yegorova, T., Brunet, M.-F., Stovba, S., Wilson, M., Starostenko, V., Saintot, A. & Kusznir, N. (2006). Late Palaeozoic intra- and pericratonic basins on the East European Craton and its margins. In D.G. Gee, & R.A. Stephenson (Eds.), European Lithosphere Dynamics (Vol. 32, pp. 463—479). Geol. Soc., London, Memoir. https://doi.org/10.1144/GSL.MEM.2006.032.01.29.

Thybo, H., Janik, T., Omelchenko, V.D., Grad, M., Garetsky, R.G., Belinsky, A.A., Karataev, G.I., Zlotski, G., Knudsen, U.E., Sand, R., Yliniemi, J., Tiir, T., Luost, U., Komminaho, K., Giese, R., Guterch, A., Lund, C.-E., Kharitonov, O.M., Ilchenko, T., Lysynchu, D.V., Skobelev, V.M., & Doody, J.J. (2003). Upper lithosperic seismic velocity structure across the Pripyat Trough and Ukrainian Shield along the EUROBRIDGE ’97 profile. Tectonophysics, 371, 41—79. https://doi.org/10.1016/S0040-1951(03)00200-2.

Verpakhovska, A., Pylypenko, V., Yegorova, T., & Murovskaya, A. (2018). Seismic image of the crust on the PANCAKE profile across the Ukrainian Carpathians from the migration method. Journal of Geodynamics, 121, 76—87. https://doi.org/10.1016/j.jog.2018.07.006.

Yegorova, T.P., Starostenko, V.I., Kozlenko, V.G., & Yliniemi, J. (2004a). Lithosphere structure of the Ukrainian Shield and Pripyat Trough in the region of EUROBRIDGE-97 (Ukraine and Belarus) from gravity modeling. Tectonophysics, 381(1-4), 29—59. https://doi.org/10.1016/j.tecto.2002.06.003.

Yegorova, T.P., Stephenson, R.A., Kostyuchenko, S.L., Baranova, E.P., Starostenko, V.I., & Poppolitov, K.E. (2004b). Structure of the lithosphe¬re below the southern margin of the East-European Craton (Ukraine and Russia) from gravity and seismic data. Tectonophysics, 381(1-4), 81—100. https://doi.org/10.1016/j.tecto.2002.08.003.

Published

2020-11-02

How to Cite

Yegorova Т., & Murovskaya, A. (2020). Pripyat trough as a possible channel of mantle degassing: deep structure and position in the junction zone of Sarmatia and Fennoscandia. Geofizicheskiy Zhurnal, 42(5), 107–129. https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215073

Issue

Section

Articles