Integrated geological-geophysical characterization of the zone of the Kherson—Smolensk transregional tectonic suture — deep long-lived magma- and fluid-conducting channel
DOI:
https://doi.org/10.24028/gzh.v43i5.244075Keywords:
Kherson—Smolensk trans-regional suture, inhomogeneities of the crystalline crust, magmatism of the USh and DDD, zone of low velocities of the crystalline crust, degassing of the mantle, abiogenic hydrocarbonsAbstract
The transregional Kherson—Smolensk suture has been established to be located between large meridional faults of the crystalline crust of the Ukrainian Shield (USh) in a strip of 50—70 km width and separates two microplates of different composition of the Precambrian basement. It is traced by subcrustal mantle heterogeneity in the lithosphere and a change in the relief of the main geodynamic boundary. The suture controls the USh large multiphase magmatic massifs and manifestation of the basic mafic magmatism in the Dniepr-Donets Depressin (DDD), which age decreases from south to north from the Early Proterozoic in the shield to the Devonian in the depression. On both sides of it, the crystalline crust differs in a set of parameters including a zone of low velocities in the area of the Novokonstantinovsky ore field of the USh to the east of the Kherson—Smolensk suture, where from DSS data its maximum thickness is 10—15 km in the upper crust. It appears to bea source of abiogenic hydrogen manifestations recorded by mining operations on this field. The Kherson—Smolensk suture, being a transregional mantle feature, unites the existing hydrocarbon manifestation in the USh with the promising hydrocarbon areas of the DDD. The inhomogeneities of the crystalline crust and the uppermost mantle give strong evidences to classify reasonably the transregional tectonic suture Kherson—Smolensk as a powerful mantle long-lived magmatic and fluid-conducting channel. Ores hows and modern degassing of methane are related to it, with methane beingmain greenhouse gas.
References
Valyaev, B. M. (2013). From the genesis of traditional to the genesis of traditional and unconventional accumulations and resources of hydrocarbons. Electronic scientific journal «Georesources, Geoenergy and Geopolitics», (1). Retrieved from http://oilgasjournal.center.ru/archive/issue/details/1356/1490 (in Russian).
Haiovskyi, O. V., Bekesha, S. N., Syvko, Ye. M., & Yatsenko, H. M. (2019). Geology and lithological and structural conditions of brecciated rocks localization of the central part of the Ukrainian Shield (as an example of the Hruzs¬ke field of pipe-like bodies). Geofizicheskiy
Zhurnal, 41(6), 93—110. https://doi.org/10. 24028/gzh.0203-3100.v41i6.2019.190068 (in Russian).
Garkusha, D. N., & Fedorov, Yu. A. (2019). Global methane emissions from geological sources. International research journal, 3(81). http://doi/org/10.23670.IRJ.2019.81.3.006 (in Russian).
Gintov, O. B., & Mychak, S.V. (2011). Geodynamic development of the Ingul megablock of the Ukrainian Shield for geological-geophysical and tectonophysical data. I. Geofizicheskiy Zhurnal, 33(3), 102—118. https://doi.org/ 10.24028/gzh.0203-3100.v33i3.2011.116932 (in Russian).
Dmitrievskiy, A. N. (2009). Energy, dynamics and degassing of the Earth.Electronic scientific journal «Georesources, Geoenergy and Geopolitics», (1). Retrieved from http://oilgasjournal.ru/2009-1/1-rubric/dmitrievsky-energ (in Russian).
Starostenko, V. I., & Gintov, O. B. (Eds.). (2013). Kirovograd ore region. Deep structure. Tectonophysical analysis. Deposits of ore minerals. Kiev: Prastye Ludy, 499 p. (in Russian).
Korchin, V. A., Burtnyi, P. A., & Karnaukhova, E. E. (2020). The density of magmatic, ultrametamorphic rocks of the Ukrainian Shield in model deep conditions of the Earth’s crust (experimental data). Geofizicheskiy Zhurnal, 42(5), 148—171. https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215078 (in Russian).
Korchin, V. A., Burtnyi, P. A., Kobolev, V. P., Rusakov, O. M., Voloshin, L. N., & Alyabyev, A. Ya. (1998). Seismoacoustic studies of gas-emitting structures of the bottom of the north-western part of the Black Sea. Geofizicheskiy Zhurnal, 20(5), 110—117 (in Russian).
Korchin, V. A., & Rusakov, O. M. (2019). A thermobaric mechanism for the formation of low velocity zones in the crystalline crust of the northwestern Black Sea shelf: a new type of traps for abiogenic methane. Geofizicheskiy Zhurnal, 41(2), 99—111. https://doi.org/10.24028/gzh.0203-3100.v41i2.2019.164456 (in Russian).
Levashov, S. P., Yakimchuk, N. A., & Korchagin, I. N. (2010). On the possibility of mapping hydrocarbon accumulations in crystalline rocks by geoelectric methods. Geoinformatika, (1), 22—32 (in Russian).
Muslimov, R. Kh., Trofimov, V. A., Plotnikova, I. N., Ibattulin, R. R., & Goryunov, E. Yu. (2019). The role of deep degassing of the Earth and the crystalline basement in the formation and natural replenishment of oil and gas reserves. Kazan, 264 p. (in Russian).
Nechaev, S. V., Gintov, O. B., & Mychak, S. V. (2019). On the relationship between the rare-earth — rare-metal and gold ore mineralization and fault-block tectonics of the Ukrainian Shield. 1. Geofizicheskiy Zhurnal, 41(1), 3—32. https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158861 (in Russian).
Pavlenkova, N. I. (2006). Fluid regime of the Earth’s upper shells according to geophysical data. The problem of global geodynamics. Proceedings of the All-Russian Symposium «Deep Fluids and Geodynamics» (Moscow, November 19—21, 2003) (pp. 201—218). Moscow: Edition of the Geological Institute of the Russian Academy of Sciences (in Russian).
Pashkevich, I. K., & Bakarzhieva, M. (2013). 3D magnetic model of the Korsun-Novomirgorod pluton and its geological interpretation. Geofizicheskiy Zhurnal, 35(4), 115—126. https://doi.org/10.24028/gzh.0203-3100.v35i4.2013.111427 (in Russian).
Pashova, N. T., Krivosheya, V. A., Marina, N. V., & Fedorchuk, N. I. (2013). Ring structures of the northern coastal zone of DDZ нні deep migration channels BB — analogs «GASHIMNEY». Black Sea test site for studying the geodynamics and fluid dynamics of the formation of oil and gas fields. Abstracts of the XI International Conference «Crimea-2013» (pp. 32—33). Simferopol (in Russian).
Senin, B. V. (2012). Report on the program of marine scientific works «Study of the geological structure of pre-Cenozoic sediments and the deep structure of the Black Sea basin», (Ukrainian sector). Gelendzhik (in Russian).
Starostenko, V. I., Lukin, A. E., Rusakov, O. M., Pash¬kevich, I. K., Kutas, R. I., Gladun, V. V., Le-bed, T. V., Maksimchuk, P. Ya. Legostaeva, O. V., Makarenko, I. B. (2012). On the pros¬pects for the discovery of massive hydrocarbon deposits in the heterogeneous traps of the Black Sea. Geofizicheskiy Zhurnal, 34(5), 3—21. https://doi.org/10.24028/gzh.0203-3100.v34i5.2012.116660 (in Russian).
Starostenko, V. I., Lukin, A. E., Tsvetkova, T. A., & Shumlyanskaya, L. E. (2014). Geofluids and up-to-date display of activization of the Ingul megablock of the Ukrainian Shield. Geofizicheskiy Zhurnal, 36(5), 3—25. https://doi.org/10.24028/gzh.0203-3100/v36i5.111567 (in Russian).
Starostenko, V. I., Kuprienko, P. Ya., Makarenko, I. B., Savchenko, A. S., & Legostaeva, O. V. (2015). Density heterogeneity of the Earth’s crust of the Ingul megablock of the Ukrainian Shield according to the data of three-di¬men¬si¬onal gravity modeling. Geofizicheskiy Zhurnal, 37(3), 3—21. https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111089 (in Russian).
Starostenko, V. I., & Rusakov, O. M. (Eds.). (2015). Tectonics and hydrocarbon potential of the crystalline basement of the Dnieper-Donetsk depression. Kiev: Galaktika, 212 p. (in Russian).
Hurskyy, S. (Ed.). (2007). Tectonic map of Ukraine. M-b 1:1 000 000. Kyiv: Publication of the Ministry of Environmental Protection of Ukraine, State Geological Survey (in Ukrainian).
Tsvetkova, T. A., Bugaenko, I. V., & Zayats, L. N. (2019). The main geodynamic border and seismic visualization of plumes under the East European Platform. Geofizicheskiy Zhurnal, 41(1), 137—152. https://doi.org/ 10/24028/gzh.0203-3100.v41i1/2019/158868 (in Russian).
Tsvetkova, T. A., Bugaenko, I. V., & Zayats, L. N. (2017). Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy Zhurnal, 39(4), 42—54. https://doi.org/10.24028/gzh.0203-3100.v39i4.2017.107506 (in Russian).
Shestopalov, V. M., Lukin, A. E., Zgonnik, V. A., Makarenko, A. N., Larin, N. V., & Boguslavskiy, A. S. (2018). Essays on the degassing of the Earth. Kiev: Itek-service, 232 p. (in Russian).
Starostenko, V. I., Janik, T., Gintov, O. B., Lysynchuk, D. V., Środa, P., Czuba, W., Kolomiets, E. V.,
Aleksandrovski, P., Omelchenko, V. D., Komminaho, K., Guterch, A., Tiira, T., Gryn, D. N., Legostaeva, O. V., Thybo, G., & Tolkunov, A. V. (2017a). Crustal and upper mantle velocity model along the DOBRE-4 profile from North Dobruja to the Central Region of the Ukrainian Shield: 1. Seismic data. Physics of the Solid Earth, 53(2), 193—204. https://doi.org/10.1134/S1069351317020124.
Starostenko, V. I., Janik, T., Gintov, O. B., Lysynchuk, D. V., Środa, P., Czuba, W., Kolomiets, E. V., Aleksandrovski, P., Omelchenko, V. D., Komminaho, K., Guterch, A., Tiira, T., Gryn, D. N., Legostaeva, O. V., Thybo, G., & Tolkunov, A. V. (2017б). Crustal and upper mantle velocity model along the DOBRE-4 profile from North Dobruja to the Central Region of the Ukrainian Shield: 2. Geotectonic interpretation. Physics of the Solid Earth, 53(2), 205—213. https://doi.org/10.1134/S1069351317020136.
Wilson, M., & Lyashkevich, Z. M. (1996). Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift, East European Platform. Tectonophysics, 268, 65—81. https://doi.org/10.1016/S0040-1951(96)00234-X.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., del Giorgio, P. A. (2014). Methane flu¬x¬es show consistent temperature dependence across microbial to ecosystems scales. Nature, 507, 488—491. https://doi.org/10.1038/nature13164.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).