Seismic response of various sites of the territory of Kyiv to seismic loads
DOI:
https://doi.org/10.24028/gzh.v43i5.244077Keywords:
seismic ground response analysis, response spectrum, Fourier amplitude spectrum, peak ground acceleration, peak ground shear strainAbstract
The research presented in the work aims to assess the seismic response of three different taxonometric sites, identified by the method of engineering and geological analogies within the territory of Kyiv, to seismic loads with different spectral content and peak amplitude from 0.01 g to 0.06 g. Assessment of the influence of local soil conditions on the intensity of earthquakes is an important task of earthquake-resistant design and construction. The soil layer at the base of the study site acts as a filter on seismic vibrations. It amplifies or attenuates the amplitude of the seismic wave propagating from the bedrock to the free surface. The paper considers the mechanisms of the possible amplification of seismic motions by various soil complexes and methods for calculating the seismic response to seismic loads of various intensities. As an analytical tool for analyzing the response of the taxonometric areas to seismic vibrations (seismic response), an equivalent linear analysis was used, which is comprehensively studied and widely used in engineering seismology. For the selected sites, models of soil strata were built, and graphs of changes with depth of peak shear strain and peak ground acceleration (PGA) were calculated, as well as predicted (expected with a given probability of non-exceeding) amplitude Fourier spectra of seismic motions in the upper layer and the response spectra of single oscillators with 5 % attenuation to seismic effects with a maximum amplitude from 0.01 g to 0.06 g. A comparative analysis of the change in the value of these parameters in individual sections of Kyiv is presented. It is shown that to assess the potential hazard from seismic ground motions during earthquakes, it is necessary to use the maximum number of design parameters that characterize the seismic hazard of specific areas and which are used to determine the seismic resistance of buildings and structures. The most complete seismic hazard for calculating the seismic stability of objects is set by the full vector of seismic motions deployed in time: calculated accelerograms, seismograms and velocigrams. The presented calculation results are planned to be used in solving methodological and practical problems of earthquake protection, which can be realized in different parts of the territory of Kyiv.
References
National standard DSTU-B-B.1.1-28: 2010 «Protection against dangerous geological processes, harmful operational impacts, fire. Seismic intensity scale». (2010). Kyiv: Derzhbud Ukrainy, 78 p. (in Ukrainian).
SBC В.1.1-12:2014. Building in seismic region of Ukraine. (2014). Kyiv: Ministry of Regional Development, Building and Housing of Ukraine, 110 p. (in Ukrainian).
SBC А.2.1-1-2014. Engineering Surveys for Buildings. (2014). Kyiv: Ministry of Regional Development, Building and Housing of Ukraine, 63 p. (in Ukrainian).
Aki, K., & Richards, P. (1980). Quantitive seismology: Theory and methods. San Francisco: Freeman and Company, 557 p.
Anderson, J. G., & Hough, S. E. (1984). A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies. Bulletin of the Seismological Society of America, 74(5), 1969—1993. https://doi.org/ 10.1785/BSSA0740051969.
Biot, M. (1934). Theory of vibration of buildings during earthquake. Zeitschrift für Angewandte Mathematik und Mechanik, 14(4), 213—223. https://doi.org/10.1002/zamm.19340140405.
Chen, K. C., Chiu, J. M., & Yang, Y. T. (1996). Shear Wave Velocity of Sedimentary Basin in the Upper Mississippi Embayment Using S-to-P Converted Waves. Bulletin of the Seismological Society of America, 86(3), 848—856. https://doi.org/10.1785/BSSA0860030848.
Darragh, R. B., & Shakal, A. F. (1991). The Site Response of Two Rock and Soil Station Pairs to Strong and Weak Ground Motions. Bulletin of the Seismological Society of America, 81(5), 1885—1899. https://doi.org/10.1785/BSSA0810051885.
Idriss, I. M., & Seed, H. B. (1968). Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations, 94(4), 1003—1031. https://doi.org/10.1061/JSFEAQ.0001163.
Kavazanjian, E., JrMatasovic, N., Hadj-Hamou, T. & Sabatini, P. J. (1997). Geotechnical Earthquake Engineering for Highways, 1. Design Principles, Geotechnical Engineering Circular No 3. US Federal Highway Administration. Retrieved from https://vulcanhammernet.files.wordpress.com/2017/01/009759.pdf.
Kendzera, O., & Semenova, Y. (2020). Seismic zoning of Kyiv in physical parameters of soil oscillations. Geodynamics, (2), 97—106. https://doi.org/10.23939/jgd2020.02.097.
Kramer, S. L. (1996). Geotechnical Earthquake Engineering. New York: Prentice Hall, Upper Saddle River, 672 p.
Schnabel, P. B., Lysmer, J., & Seed, H. B. (1972). SHAKE: A computer pro-gram for earthquake response analysis of horizontally layered sites. Report No. EERC 72-12. Berkeley, California: Earthquake Engineering Research Center, University of California, 102 p.
Suyehiro, K. A (1926). Seismic Vibration Analyser and the Records Obtained Therewit. Bulletin of the Earthquake Research Institute-University of Tokyo, (1), 59—64.
Wood, H. O. (1908). Distribution of apparent intensity in San Francisco, in The California earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission (pp. 220—245). Carnegie Inst. Washington Pub. 87, Washington, D.C.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).