About geological theory

Authors

  • V.V. Gordienko Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v44i2.256266

Keywords:

advection-polymorphic hypothesis, verification of predictions, geological theory

Abstract

The author’s advection-polymorphic hypothesis of deep processes in the tectonosphere is based on V.V. Belousov’s system of endogenous regimes, a certain source of energy (radioactive decay in crustal and upper mantle rocks), and the method of energy transfer (advection). Elementary volumes of transported material have been termed «quanta of tectonic action» (QTA) with the diameter of about 50―70 km. The physical reality of such objects is proved. The choice of endogenous regime is related to the type of the preceding thermal model.

The mechanism of the tectonosphere’s «heat machine», which relies firmly established facts and quantitatively explains the main events of geological history within the energy conservation law, has been substantiated.

For any period, from the Early Archaean to our time, it is possible to numerically justify the pattern of heat and mass transfer, to select the endogenous regimes, and construct a non-stationary heat model and variation in time of the distribution of physical properties of rocks. By using the findings and solving only direct problems, one can determine the geological manifestations of the process and the anomalies of the physical fields. The results are compared with the observed ones (without fitting), and the discrepancies do not exceed the values due to the observation and calculation errors.

Pursuant to the advection-polymorphic hypothesis, it became possible for the first time to predict: 1. The emergence of quanta of tectonic action. 2. Stability of parameters (depth and temperature) of magma chambers in the mantle in the history of the Earth. 3. Existence of the global asthenosphere (depth about 700―1000 km). 4. Velocity distribution of longitudinal seismic waves in the upper mantle of regions with all types of endogenous regimes. 5. The difference in the nature of earthquakes at various depths in the focal zones. Successful verification of predictions transfers the hypothesis into the rank of theory.

The theory is used to explain the following at the quantitative level: dating of active processes on all platforms of the Earth, temperature distribution in the crust and upper mantle of platforms and active regions, sediment thickness in geosynclines and post-rift depressions, changes in mass flow in geological history, heat flow and gravitational field anomalies.

Several applications of the theory to studies of seismicity and UHP-blocks problems and prospecting for mineral deposits (hydrocarbons, hydrothermal sulfide ores, diamonds, and geothermal energy resources) have been considered.

References

Anthony, J., Bideaux, R., Bladh, K., & Nichols, M. (2001). Handbook of Mineralogy. Mineral Data Publishing (book review).

Azbel, I., & Tolstikhin, I. (1988). Early evolution of the Earth. Preprint. Apatity: Kola Branch of the USSR Academy of Sci-ences. 42 p. (in Russian).

Belousov, V.V. (1978). Endogenous regimes of the continents. Moscow: Nedra, 232 p. (in Russian).

Belousov, V.V. (1975). Fundamentals of geotectonics. Moscow: Nedra, 262 p. (in Russian).

Belousov, V.V. (1982). Transition zones between continents and oceans. Moscow: Nedra, 152 p. (in Russian).

Belyavsky, V.V., & Kulik, S.N. (Eds.). (1998). Geoelectrical model of the tectonosphere in the Eurasian folded belt and adja-cent territories. Kiev: Znannya, 265 p. (in Russian).

Bobrov, А.V. (2009). Mineral equilibria of diamond-forming carbonate-silicate systems. PhD thesis abstract, geol.-min. science. Moscow, 44 p. (in Russian).

Buslov, M.M, Dobretsov, N.L, Vovna, G.M., & Kiselev, V.I. (2015). Structural location, composition, and geodynamic nature of diamondiferous metamorphic rocks in the Kokchetav subduction-collision zone of the Central Asia folded belt. Ge-ology and Geophysics, (1—2), 89—109 (in Russian).

Chebrov, V.N., Kugayenko, E.A., Vikulina, S.A., Kravchenko, N.M., Matveenko, S.V., Mityushkina, S.V., Raevskaya, A.A., Saltykov, V.A., & Chebrov, D.V. (2013). The 24.05.2013 Deep-Focus Earthquake with a Magnitude of 8.3 — Powerful Seismic Events off the Coast of Kamchatka over the Period of Detailed Seismological Observations. Reports of the Kamchatka Regional Research Center Association, Earth Sciences (Vol. 21, No 1, pp. 17—25) (in Russian).

Chen, X., Lin, C., & Shi, L. (2007). Rheology of the lower crust beneath the northern part of North China: Inferences from lower crustal xenoliths from Hannuoba basalts, Hebei Province, China. Science in China Series D: Earth Sciences, 50(8), 1128—1141.

Cloos, H. (1939). Hebung — Spaltung — Vulcanismus. Geol. Rundschau, 30, 637—640.

Dimanov, A., & Dresen, G. (2005). Rheology of synthetic anorthite-diopside aggregates: Implications for ductile shear zones. Journal of Geophysical Research, 110, B07203. https://doi.org/10.1029/2004JB003431.

Enescu, B., Mori, J., Miyazawa, M., & Kano, Y. (2009). Omori-Utsu Law c-Values Associated with Recent Moderate Earth-quakes in Japan. Bulletin of the Seismological Society of America, 99(2A), 884—891. https://doi.org/10.1785/0120080211.

Gerya, T.V. (2010). Introduction to numerical geodynamic modelling. Cambridge: Cambridge University Press, 370 p.

Gordienko, V.V. (2007). Advection-polymorphic hypothesis of processes in the tectonosphere. Kiev: Korvin press, 172 p. (in Russian).

Gordienko, V.V. (2014). Deep processes and seismicity. Geophysical Journal, 36(1), 19—42 (in Russian).

Gordienko, V.V. (1998). Deep processes in the tectonosphere of the Earth. Kiev: Publ. IGF NASU, 85 p. (in Russian).

Gordienko, V.V. (2001). On advective and polymorphic processes in the tectonosphere of the Pacific-type transition zone. Geophysical Journal, 23(6), 21—39. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116147 (in Russian).

Gordienko, V.V. (2012). Processes in the Earth’s tectonosphere (Advection-polymorphic hypothesis). Saarbrücken: LAP, 256 p. (in Russian).

Gordienko, V.V. (1975). Thermal anomalies of geo¬synclines. Kiev: Naukova Dumka, 142 p. (in Russian).

Gordienko, V.V. (2017). Thermal processes, geodynamics, deposits, 285 p. Retrieved from https://docs.wixstatic.com/ugd/6d9890_090e4a0466b94934b7d7af8c751a70bf.pdf.

Gordienko, V.V., Andreev, A.A., Bikkenina, S.K. et al. (1992). Tectonosphere of the Asian Pacific Rim. Vladivostok: Publ. FEB RAS, 238 p. (in Russian).

Gordienko, V., & Gordienko, L. (2018). Plate tectonics and earthquakes. NCGT Journal, (4), 480—492.

Gordienko, L., & Gordienko, V. (2020). Velocity structure of the upper mantle. NCGT Journal, (2), 94—104.

Gordienko, V., & Gordienko, L. (2021). On a hypothetical mechanism triggering crustal earthquakes in Alpine geosyn-clines. NCGT Journal, (1), 217—230.

Gordienko, V., & Logvinov, I. (2011). The global asthenosphere. Izvestiya, Physics of the Solid Earth, (2), 109—116 (in Rus-sian).

Gordienko, V.V., Zunnunov, F.Kh., Таl-Virsky, B.B. et al. (1990). Tectonosphere of Middle Asia and South Khazahstan. Kiev: Naukova Dumka, 232 p. (in Russian).

Gudmundsson, O., & Sambridge, M. (1998). A regionalized upper mantle (RUM) seismic mo¬del. Journal of Geophysical Research: So¬lid Earth, 102(B4), 7121—7126. https://doi.org/10.1029/ 97JB02488.

Guglielmi, A.V. (2017). The Law of Omori (from the history of geophysics). Advances in Physical Sciences, 187(3), 343—348 (in Russian).

International Seismological Centre. (2014). On-line Bulletin, Internal. Seismol. Cent., Thatcham, United Kingdom. Re-trieved from http://www.isc.ac.uk.

Ivanov, A.V. (2010). Deep geodynamics: process boundaries according to geochemical and petrological data. Geodynamics and Tectonophysics, (1), 87—102 (in Russian).

James, D., Boyd, F., Schutt, D., Beii, D., & Carlson, R. (2004). Xenolith constraints on seismic velocities in the upper mantle southern Africa. Geochemistry, Geophysics, Geosystems, 5(1). https://doi.org/10.1029/2003GC000551.

Khain, V.Ye. (1977). Regional tectonics. Non-Alpine Europe and Western Asia. Moscow: Nedra, 360 p. (in Russian).

Khazan, Ja.M. (1999). Thermal instability near the level of density inversion of the melt and the solid phase: model based on Rayleigh-Taylor approximation. Geophysical Journal, 21(3), 91—99 (in Russian).

Liou, J., Tsujimori, T., Zhang, R. Katayama, I., & Maruyama, S. (2004). Global UHP Metamorphism and continental subduc-tion/collision: The Himalayan Model. International Geology Review, 46, 1— 27. https://doi.org/10.2747/0020-6814.46.1.1.

Malusà, M., Faccenna, C., Baldwint, S., Fitzgerald, P., Rossetti, F., Balestrieri, M., Danišík, M., Ellero, A., Ottria, G., & Piromallo, C. (2015). Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boun¬dary (Western Alps, Calabria, Corsica). Geo¬che¬mistry, Geophysics, Geosystems. https://doi.org/10.1002/2015GC005767.

Perchuk, L.L. (1997). Geothermobarometry and translocations of crystalline rocks in the Earth’s crust and upper mantle. Soros Educational Jour¬nal, (7), 64—72 (in Russian).

Popper, K. (1959). The Logic of Scientific Discovery. London, New York: Routlege classic, 514 p.

Schmeling, H. (2000). Partial melting and melt segregation in a convecting mantle. In Physics and Chemistry of Partially Molten Rocks (pp. 1—25). Dordrecht: Kluwer Academic Publishers.

Semenov, V.Yu. (1998). Regional conductivity structures of the Earth’s mantle. Publish. Inst. Geophys. Pol. Acad. Sc. C-65(302), 122 p.

Shirey, S., Cartigny, P., Frost, D. Keshav, S., Nes¬to¬la, F., Nimis, P., Pearson, D., Sobolev, V., Wal¬ter, M. (2013a). Diamonds and the Geo¬logy of Mantle Carbon. Reviews in Mineralogy & Geochemistry, 75, 355—421. https://doi.org/10.2138/rmg.2013.75.12.

Shirey, S., & Shigley, J. (2013b). Recent Advances in Understanding the Geology of Diamonds. Gems & Gemology, 49(4). Retrieved from https:.www.gia.edu/gems-gemology/WN13-advances-diamond-geology-shirey.

Sholpo, V.N. (1991). Spatial organization of mobile belts’ lithospheric structure. In Geodynamics and evolution of the Tec-tonosphere (pp. 124—135). Moscow: Nauka (in Russian).

Stille, H. (1924). Grundfragen der vergleichenden tektonik. Berlin: Gebruder Borntraeger, 443 p.

Terkot, D., & Schubert, J. (1985). Geodynamics. Moscow: Mir, 730 p. (in Russian).

Verkhovtsev, V. (2006). Recent vertical crustal mo¬ve¬ments on the territory of Ukraine and their relationship with linear and circular struc¬tures. In Global energy, its geological and ecological manifestations, and scientific and practical utili-zation (pp. 129—137). Kyiv: KSU (in Uk¬rai¬nian).

Wikipedia. The scientific method. (2022). Retrieved from https://en.wikipedia.org/wiki/Scientific_method.

Yanovskaya, T.B. (2006). Basics of Seismology. Saint Petersburg: State University, 288 p. (in Russian).

Zhimulev, F.I. (2007). Tectonics and early Ordovician geodynamic evolution of the Kokchetav UP-UHP metamorphic belt. Dis. Cand. sciences. Novosibirsk: IGiM SB RAS. 180 p.

Downloads

Published

2022-06-02

How to Cite

Gordienko, V. . (2022). About geological theory. Geofizicheskiy Zhurnal, 44(2), 68–92. https://doi.org/10.24028/gj.v44i2.256266

Issue

Section

Articles