Geological Theory versus Plate Tectonics. A Comment to the paper by V.V. Gordienko «About Geological Theory»

Authors

  • Y. Khazan

DOI:

https://doi.org/10.24028/gj.v44i3.261977

Abstract

Geological Theory versus Plate Tectonics. A Comment to the paper
by V.V. Gordienko «About Geological Theory»

References

Aryasova, O.V. & Khazan, Y.M. (2016). A new approach to computing steady-state geotherms: The marginal stability condition. Tectonophysics, 693, 32—46. https://doi.org/10.1016/j.tecto.2016.10.014.

Aryasova, O., & Khazan, Y. (2018). From global tectonics to global geodynamics. Geofizicheskiy Zhyrnal, 40(5), 71—97. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147475 (in Russian).

Bea, F., Bortnikov, N., Montero, P., Zinger, T., Sharkov, E., Silantyev, S., Skolotnev, S., Trukhalev, A., & Molina-Palma, J.F. (2020). Zircon xenocryst evidence for crustal recycling at the Mid-At-lantic Ridge. Lithos, 354-355, 105361. https://doi.org/10.1016/j.lithos.2019.105361.

Belousov, V.V. (1978). Endogenous regimes of the continents. Moscow: Nedra, 232 p. (in Russian).

Bilek, S.L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468—1500. https://doi.org/10.1130/ges01608.1.

Bortnikov, N.S., Sharkov, E.V., Bogatikov, O.A., Zinger, T.F., Lepekhina, E.N., Antonov, A.V., & Sergeev, S.A. (2008). Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′—5°02.2′ N (results of SHRIMP-II U-Pb dating): implication for deep geodynamics of modern oceans. Doklady Earth Sciences, 421(5), 859—866. https://doi.org/10.1134/S1028334X08050334.

Bortnikov, N.S., Silantyev, S.A., Bea, F., Montero, P., Zinger, T.F., Skolotnev, S.G., & Sharkov, E.V. (2019). U-Pb Dating, Oxygen and Hafnium Isotope Ratios of Zircon from Rocks of Oceanic Core Complexes at the Mid-Atlantic Ridge: Evidence for the Interaction of Contemporary and Ancient Crusts in the Spreading Center of the Ocean Floor. Doklady Earth Sciences, 489(2), 1396—1401. https://doi.org/10.1134/s1028334x19120109.

Bortnikov, N.S., Silantyev, S.A., Bea, F., Montero, P., Zinger, T.F., Skolotnev, S.G., & Sharkov, E.V. (2022). Multiple Melting of a Heterogeneous Mantle and Episodic Accretion of Oceanic Crust in a Spreading Zone: Zircon U-Pb Age and Hf-O Isotope from an Oceanic Core Complex of the Mid-Atlantic Ridge. Petrology, 30, 1—24. https://doi.org/10.1134/S0869591122010040.

Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., Sladen, A., Hebert, H., Prawirodirdjo, L., Yehuda Bock, Y., & Galetzka, J. (2007). Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman Earthquake of 2004. Bulletin of the Seismological Society of America, 97(1A), S152—S173. https://doi.org/10.1785/0120050631.

Cipriani, A., Bonatti, E., Seyler, M., Brueckner, H.K., Brunelli, D., Dallai, L., Hemming, S.R., Ligi, M., Ottolini, L., & Turrin, B.D. (2009). A 19 to 17 Maamagmatic extension event at the Mid-Atlantic Ridge: Ultramafic mylonites from the Vema Lithospheric Section. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002534.

Dickin, A.P. (2005). Radiogenic Isotope Geology (Ch. 10, pp. 254—290). Cambridge Univ. Press: N.Y.P. https://doi.org/10.1017/CBO9781139165150.011.

Engdahl, E.R., & Villaseсor, A. (2002). Global seismicity: 1900—1999. In W.H.K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology (Part A., 81(A), pp. 665—690). https://doi.org/10.1016/s0074-6142(02)80244-3.

Gerya, T.V., Bercovici, D., & Becker, T.W. (2021). Dynamic slab segmentation due to brittle—ductile damage in the outer rise. Nature, 599, 245—250. https://doi.org/10.1038/s41586-021-03937-x.

Gordienko, V.V. (2022). About geological theory. Geofizicheskiy Zhurnal, 44(2), 68—92. https://doi.org/10.24028/gj.v44i2.256266.

Gordienko, V.V. (2018). On the motion of lithospheric plates in the oceans and transition zones. Geofizicheskiy Zhyrnal, 40(3), 129—144. https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137181 (in Russian).

Gordienko, V.V. (2013). On the plate tectonics hypothesis. Geofizicheskiy Zhyrnal, 35(6), 71—100. https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116451 (in Russian).

Gordienko, V.V. (2017). Thermal processes, geodynamics, deposits, 305 p. Retrieved from http://www.geokniga.org/bookfiles/geoknigateplovyeprocessy.pdf (in Russian).

Ho, T.-C., Satake, K., Watada, S., & Fujii, Y. (2019). Source estimate for the 1960 Chile earthquake from joint inversion of geodetic and transoceanic tsunami data. Journal of Geophysical Research: Solid Earth, 124(3), 2812—2828. https://doi.org/10.1029/2018JB016996.

Hyndman, R.D. (2007). The seismogenic zone of subduction thrust faults: What we know and don’t know. In T. Dixon, J.C. Moore. (Eds.), The Seismogenic Zone of Subduction Thrust Faults (pp. 15—41). New York: Columbia Univ. Press.

Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y.,Ohzono, M., Tsushima, H., Suzuki, S., Fujimoto, H., & Miura, S. (2012). Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M 9.0) refined by means of seafloor geodetic data. Journal of Geophysical Research: Solid Earth, 117(B7), B07409. https://doi.org/10.1029/2012jb009186.

Kelley, S. (2002). K-Ar and Ar-Ar dating. Rev. Min. Geochem., 47(1), 785—818. https://doi.org/10.2138/rmg.2002.47.17.

Khazan, Ya.M. (2014). Plate tectonics: «for» and ... «for». Geofizicheskiy Zhyrnal, 36(5), 170—174 (in Russian).

Kim, J., & Cho, I.H. (2020). Improvement of 40Ar/39Ar age determinations for Quaternary basaltic rocks by eliminating the peak suppression effect. Journal of Analytical Science and Technology, 11(9). https://doi.org/10.1186/s40543-020-00207-9.

Kostitsyn, Y.A., Belousova, E.A., Silant’ev, S.A., Bortnikov, N.S., & Anosova, M.O. (2015). Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochemistry International, 53(9), 759—785. https://doi.org/10.1134/s0016702915090025.

Kostitsyn, Y.A., Silantyev, S.A., Anosova, M.O., Shabykova, V.V., & Skolotnev, S.G. (2018). Age of plutonic rocks from the Vema fracture zone (Central Atlantic) and nature of their mantle sources. Geochemistry International, 56(2), 89—110. https://doi.org/10.1134/s0016702918020039.

Lissenberg, C.J., Rioux, M., Shimizu, N., Bowring, S.A., & Mevel, C. (2009). Zircon Dating of Oceanic Crustal Accretion. Science, 323(5917), 1048—1050. https://doi.org/10.1126/science.1167330.

McDougall, I., & Harrison, T.M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar. Oxford: Oxford Univ. Press, 288 p.

Petersen, R.I., Stegman, D.R., & Tackley, P.J. (2016). The subduction dichotomy of strong plates and weak slabs. Solid Earth, 8(2), 339—350. https://doi.org/10.5194/se-8-339-2017.

Poincaré, A. (1999). Probability Theory. Izhevsk: Editorial staff of the journal «Regular and Chaotic Dynamics», 280 p. (in Russian).

Poincaré, A. (2020). Theorem of the century. The world from the point of view of mathematics. Moscow: Rodina Publishing House LLC, 461 p. (in Russian).

Plafker, G. (1965) Tectonic deformation associated with the 1964 Alaska earthquake. Science, 148, 1675—1687. https://doi.org/10.1126/science.148.3678.1675.

Plafker, G. (1972). Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. Journal of Geophysical Research, 77, 901—925. https://doi.org/10.1029/JB077i005p00901.

Plafker, G., & Savage, J.C. (1970). Mechanism of the Chilean earthquakes of May 21 and 22, 1960, Geol. Bulletin of the Seismological Society of America, 81, 1001—1030. https://doi.org/10.1130/0016-7606(1970)81[1001:MOTCEO]2.0.CO;2.

Ranero, C.R., Phipps Morgan, J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367—373. https://doi.org/10.1038/nature01961.

Schaen, A.J., Jicha, B.R., Hodges, K.V., Vermeesch, P., Stelten, M.E., Mercer, C.M., Phillips, D., Rivera, T.A., Fred Jourdan, F., Matchan, E., Hemming, S.R, Morgan, L.E., Kelley, S.P., Cassata, W.S., Heizler, M.T., Vasconcelos, P.M., Benowitz, J.A., Koppers, A.A.P., Mark, D.F., Niespolo, E.M., Sprain, C.J, Hames, W.E., Kuiper, K.F., Turrin, B.D., Renne, P.R., Ross, J., Nomade, S., Guillou, H., Webb, L.W., Cohen, B.A., Calvert, A.T., Joyce, N., Ganerшd, M., Wijbrans, J., Ishizuka, O., He, H., Ramirez, A., Pfänder, J.A., Lopez-Martínez, M., Qiu, H., & Singer, B.S. (2021) Interpreting and reporting 40Ar/39Ar geochronologic data. Geological Society of America Bulletin, 133, 461—487. https://doi.org/10.1130/b35560.1.

Silantiev, S.A., Levskiy, L.K., Arakelyants, M.M., Lebedev, V.A., Bugo, A., & Kannat, M. (2000). The age of magmatic and metamorphic events in the Mid-Atlantic Ridge: interpretation of K-Ar isotope dating data. Russian Journal of Earth Sciences, 2(3), 269—278. https://doi.org/10.2205/2000ES000044.

Skolotnev, S.G., Bel’tenev, V.E., Lepekhina, E.N., & Ipat’eva, I.S. (2010). Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications. Geotectonics, 44(6), 462—492. https://doi.org/10.1134/s0016852110060038.

Stern, R.J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1—3-38. https://doi.org/10.1029/2001RG000108.

Tilmann, F.J., Grevemeyer, I., Flueh, E.R., Dahm, T., & Gossler, J. (2008). Seismicity in the outer rise offshore southern Chile: Indication of fluid effects in crust and mantle. Earth and Planetary Science Letters, 269, 41—55. http://dx.doi.org/10.1016/j.epsl.2008.01.044.

Wang, K. (2007). Elastic and Viscoelastic Models of Crustal Deformation in Subduction Earthquake Cycles. In T.H. Dixon, C. Moore (Eds.), The Seismogenic Zone of Subduction Thrust Faults (pp. 540—575). New York Chichester, West Sussex: Columbia University Press. https://doi.org/10.7312/dixo13866-017.

Downloads

Published

2022-08-24

How to Cite

Khazan, Y. . (2022). Geological Theory versus Plate Tectonics. A Comment to the paper by V.V. Gordienko «About Geological Theory». Geofizicheskiy Zhurnal, 44(3), 113–120. https://doi.org/10.24028/gj.v44i3.261977

Issue

Section

Discussions