The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development

Authors

  • O.B. Gintov Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • T.О. Tsvetkova Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • I.V. Bugaenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • L.N. Zayats Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • G.V. Murovska Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, University of Parma, Department of Life Sciences and Environmental Sustainability, Ukraine

DOI:

https://doi.org/10.24028/gj.v44i6.273640

Keywords:

Trans-European suture zone, crust, mantle, seismotomograhy, Avalonia, subduction, palaeotectonics

Abstract

Deep crust and mantle structure of the Trans-European Suture Zone (TESZ) is considered on the basis of geological and geophysical investigations in the Baltic Sea-Black Sea section. The crustal structure of TESZ was studied on the basis of wide-angle depth seismic sounding (WDS), which was performed by international scientific teams with the participation of the Institute of Geophysics of NAS of Ukraine (IGF NASU). TESZ mantle structure was studied down to a depth of 800 km by the 3D P-velocity model of the Eurasian mantle according to the Taylor approximation method developed in the Institute of Geophysics of NASU. It is concluded that the deep crustal and mantle structure of the zone is a result of the simultaneous action of plate- and plum tectonic processes. TESZ was formed on two major collision alstages: in the late Ordovician — early Silurianas a result of the accession of the Avalonia microcontinent to the East European Platform (EEP), and in the late Carboniferous – early Permian with the accession of the European Hercynian (Varisian) terranes to EEP. The TESZ crustal structure is a trough of 150 (sometimes up to 200) km wide and several to 21 km deep, built by the allochthonous complex of paleozoids that underwent Caledonian and Hercynian orogens beyond the trough. Mantle structure of the TESZ, according to seismic tomographic studies, is of dual nature: on the one hand, the zone is traced subvertically to a depth of 700 km, on the other, within the zone there are everywhere inclined layers — slips to the depth of 350—600 km, that is the traces of subduction processes, which precededorac companied TESZ formation. Both structural features overlapeachother, which complicates paleotectonic and geohistorical analysis of TESZ formation. TESZ sinking to greater depths in the mantle can be explained by its increased permeability for advection of ultra-deep mantle fluids, established hereborogensic tomographic and paleomagnetic methods. Several variants of TESZ formation are assumed — A- or B-subduction during north eastern plate thrusting under the south western one in all variants.

References

Bakhmutov, V.G., & Polyachenko, E.B. (2018). Paleomagnetic data. In Essays of geodynamics of Ukraine (pp. 323—340). Kiev: VI EN EY (in Russian).

Geyko, V.S., Tsvetkova, T.A., Sannikova, N.P., Livanova, L.P., & Geyko, K.V. (1998). Regional 3-D P-velocity structure of the mantle of northwestern Eurasia — I. Europe.1. Geofizicheskiy Zhurnal, 20(3), 67—91 (in Russian).

Chebanenko, I.I. (Ed.). (1990). Geotectonics of Volyn-Podoliy. Kiev: Naukova Dumka, 244 p. (in Russian).

Gintov, O.B. (2019). Plate-plume tectonics as an integrated mechanism of geodynamic development of the tectonosphere of Ukraine and adjacent regions. Geofizicheskiy Zhurnal, 41(6), 3—34. https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190064 (in Russian).

Gintov, O.B., Bubnyak, I.N., Vykhot, Yu.M., Murovskaya, A.V., Nakapelyukh, M.V., & Shla¬pin¬skiy, V.E. (2014a). Tectonophysical and pa¬linspatic sections of the Ukrainian Carpa¬thi¬¬ans along the geo-traverse DOBRE-3 (PAN¬CAKE). Geofizicheskiy Zhurnal, 36(3), 3—33. https://doi.org/10.24028/gzh.0203-3100.v36i3. 2014.116050 (in Russian).

Gintov, O.B., Yegorova, T.P., Tsvetkova, T.A., Bugaenko, I.V., & Murovskaya, A.V. (2014б). Geodynamic features of joint zone of the Eurasian plate and the Alpine-Himalayan belt within the limits of Ukraine and adjacent areas. Geofizicheskiy Zhurnal, 36(5), 26—63. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014. 111568 (in Russian).

Hnylko, O.M. (2016). Geological structure and evolution of the Ukrainian Carpathians. Extended abstract of Doctor’s thesis. Lviv, 46 p. (in Ukrainian).

Derevska, K.I. (2008). Paleogeothermal regime of lithogenesis and hypogene ore formation within the Baltic-Dniester pericratonic zone of depressions in the Riphean-Phanerozoic. Extended abstract of Doctor’s thesis. Kyiv, 38 p. (in Ukrainian).

Zayats, H.B. (2013). The deep structure of the depth of the Western region of Ukraine based on seismic research and the directions of exploration for oil and gas. Lviv: Tsentr Evropy, 80 p. (in Ukrainian).

Zonenshayn, L.P., Kuzmin, M.I., & Natapov, L.M. (1990). Tectonics of the lithospheric plates of the territory of the USSR. Book 2. Moscow: Nedra, 340 p. (in Russian).

Kopp, M.L. (2005). Mobilist neotectonics of the platforms of South-Eastern Europe. Moscow: Nau¬ka, 340 p. (in Russian).

Chekunov, A.V. (Ed.). (1994). Lithosphere of Central and Eastern Europe. Young platforms and Alpine folded belt. Kiev: Naukova Dumka, 331 p. (in Russian).

Lukin, A.E., & Shestopalov, V.M. (2018). From new geological paradigm to the regional geological and geophysical survey. Geofizicheskiy Zhurnal, 40(4), 3—72. https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140610 (in Russian).

Shatsky, N.S. (Ed.). (1962). International tectonic map of Europe. 1:2 500 000. Moscow: Publishing House of the Academy of Sciences of the USSR, GUGK, 16 p. (in Russian).

Bogdanova, A.A., & Khain, V.E. (Ed.). (1981). International tectonic map of Europe and adjacent regions. 1:2 500 000. Moscow: UNESCO, Academy of Sciences of the USSR, GUGK, 20 p. (in Russian).

Murovska, G.V. (2019). Deep structure and alpine geodynamics of the Carpathian and Crimean-Black Sea regions of Ukraine. Extended abstract of Doctor’s thesis. Kyiv, 40 p. (in Ukrainian).

Patalakha, E.I., Senchenkov, I.K., & Trofimenko, G.L. (2004). Problems of the tectono-geodynamic evolution of the southwestern foreland of the East European craton and its orogenic framework. Kyiv, 234 p. (in Russian).

Polyachenko, E., Bakhmutov, V., Konstantinenko, L., Teyser-Elenska, M., Kadzialko-Hofmo¬kl, M., Skarboviychuk, T., & Yakuhno, V. (2014). New results of paleomagnetic studies of red-colored Silurian deposits. Geofizicheskiy Zhurnal, 36(3), 34—47. https://doi.org/10.24028/gzh. 0203-3100.v36i3.2014.116052 (in Russian).

Pushcharovsky, Yu.M., & Pushcharovsky, D.Yu. (2010). Geology of the Earth’s mantle. Moscow: Geos, 138 p. (in Russian).

Spytsa, R.O. (2016). Neotectonically active fracture faults of the junction zone of the Ukrainian Carpathians and platformed plains. Ukrainian Geographical Journal, (3), 206—214 (in Ukrainian).

Stupka, O.S. (2018). «Young platforms» — traditional ideas and reality (geodynamic aspect). Geodynamika, (1), 51—59 (in Ukrainian).

Tectonics of the Ukrainian Carpathians. Explanatory note to the tectonic map of the Ukrainian Carpathians. 1:200 000. (1986). Kiev: Ed. of the Ministry of Geology of the Ukrainian SSR, Ukrainian Research and Geological Survey Institute, 152 p. (in Russian).

Khain, V.E. (Ed.). (1985). Tectonic map of Europe. Moscow: Edition of the Ministry of Geology of the USSR (in Russian).

Gurskyi, D.S., & Kruglov, S.S. (Eds.). (2007). Tectonic map of Ukraine. 1:1000 000. Part 1. Explanatory note. Kyiv: Kyiv: Publ. of the Ukrainian State Geological Prospecting Institute, 95 p. (in Ukrainian).

Khain, V.E., & Bozhko, N.A. (1988). Historical geotectonics. Precambrian. Moscow: Nedra, 384 p. (in Russian).

Khain, V.E., & Seslavinskiy, K.B. (1991). Historical geotectonics. Paleozoic. Moscow: Nedra, 398 p. (in Russian).

Tsvetkova, T.A., & Bugaenko, I.V. (2012). Seismoto¬ography of the mantle under the East European platform: mantle velocity boundaries. Geofizicheskiy Zhurnal, 34(5), 161—172. https://doi.org/10.24028/gzh.0203-3100.v34i5. 2012.116672 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2019). The main geodynamic border and seis¬mic visualization of plumes under the East Euro¬pean Platform. Geofizicheskiy Zhurnal, 41(1), С. 137—152. https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158868 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2021). Speed structure of the mantle of the border of the Eastern European and West European platforms. Geofizicheskiy Zhurnal, 43(5), 181—192. https://doi.org/10.24028/gzh.v43i5.244080 (in Russian).

Yudin, V.V. (2007). Geodynamics of the Black Sea-Caspian region. Kyiv: Publ. of the Ukrainian State Geological Prospecting Institute, 143 p. (in Russian).

Yanovskaya, T.B., & Koroleva, T.Yu. (2012). Velocity structure of the upper mantle in the transition zone from the East European platform to Western Europe according to seismic noise data. Fizika Zemli, (7-8), 3—9 (in Russian).

Andrusov, D. (1968). Grundriss der Tektonik der Nordlichen Karpaten. Bratislava: Publ. House SAV, 188 p.

Bogdanova, S., Gorbatschev, R., Grad, M., Gu¬terch, A., Janik, T., Kozlovskaya, E., Motu¬za, G., Skridlaite, G., Starostenko, V., & Ta¬ran, L. (2006). EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton. In D.G. Gee & R.A. Stephen¬son (Eds.), European Lithosphere Dynamics (Vol. 32, pp. 599―625). Geol. Soc., London, Mem. https://doi.org/10.1144/GSL.MEM.2006. 032.01.36.

Cocks, L.R.M., McKerrow, W.S., & van Staal, C.R. (1997). The margins of Avalonia. Geological Magazine, 134(5), 627—636. https://doi.org/10.1017/S0016756897007425.

Cocks, L.R.M., & Torsvik, T.H. (2006). European geography in a global context from the Vendian to the end of the Palaeozoic. In D.G. Gee & R.A. Stephenson (Ed.), European Lithosphere Dynamics (Vol. 32, pp. 83—95). Geol. Soc., London, Mem.

Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1—56. https://doi.org/10. 1016/j.palaeo.2004.02.033.

Dumitrescu, I., Săndulescu, M., Lăzărescu, V., Mi¬răuta, O., Pauliuc, S., & Georgescu, C. (1962). Memoire a la carte tektonique de la Rou¬manie. Anuarul Comitetului Geologic Romaniei, 33, 5—96.

Geyko, V.S. (2004). A general theory of the seismic travel-time tomography. Geofizicheskiy Zhurnal, 26(1), 3—32.

Gertner, H.R. (1960). Uber die Verbindung der Bryuchstucke des kaledonischen Gebirges in nordischen Mitteleuropa. XXI Intern. Geol. Congr. Pt. 19 (pp. 96—101).

Grad, M., Janik, T., Guterch, A., Środa, P, Czuba, W. EUROBRIDGE’94-97, POLONAISE’97 and CELEBRATION 2000 Seismic Working Groups. (2006). Lithospheric structure of the western part of the East European Craton investigated by deep seismic profiles. Geological Quarterly, 50(1), 9—22.

Grand, S.P., Hilst, R.D., & Widiyantoro, S. (1997). High resolution global tomography: a snapshot of convection in the Earth. Geological Society of America Today, 7(4), 2—7.

Hippolyte, J.-C. (2002). Geodynamics of Dobrogea (Romania): new constraints on theevolution of the Tornquist—Teisseyre Line, the Black Sea and the Carpathians. Tectonophysics, 357(1-4), 33—53. https://doi.org/10.1016/S0040-1951(02)00361-X.

Janik, T., Starostenko, V., Aleksandrowski, P., Yego¬rova, T., Czuba, W., Środa, P., Murovskaya, A., Zayats, K., Mechie, J., Kolomiyets, K., Lysynchuk, D., Wójcik, D., Omelchenko, V., Legostaieva, O., Głuszyński, A., Tolkunov, A., Amashukeli, T., Gryn’, D., & Chulkov, S. (2022). Lithospheric Structure of the East European Cra¬ton at the Transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Poland to Ukraine). Minerals, 12, 112. https://doi.org/10.3390/min12020112.

Karnkowsky, P. (1977). Wqiebne Podloze Karpat. Prz. Geol., (6), 289—297.

Li, Z.-X., & Zhong, S. (2009). Supercontinent—superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary In¬teriors, 176(1-4), 143—156. https://doi.org/10. 1016/j.pepi.2009.05.004.

McKerrow, W.S., Mac Niocaill, C., Ahlberg, P.E., Clayton, G., Cleal, C.J., Eagar, R.M.C. (2000). The late Palaeozoic relations between Gondwana and Laurussia. Geol. Soc., London, Spec. Publ., 179, 9—20. https://doi.org/10.1144/GSL.SP.2000.179.01.03.

Mikołajczak, M., Mazur, S., & Gągała, Ł. (2019). Depth-to-basement for the East European Craton and Teisseyre-Tornquist Zone in Poland based on potential field data. International Journal of Earth Sciences, 108, 547—567. https://doi.org/10.1007/s00531-018-1668-9.

Munteanu, M., & Tatu, M. (2003). The East-Carpathian Crystalline-Mesozoic Zone(Romania): Paleozoic Amalgamation of Gondwana — and East European Craton — derived Terranes. Gondvana Research, 6(2), 185—196. https://doi.org/10.1016/S1342-937X(05)70969-2.

Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., & Woodcock, N.H. (2010). Evolution of the Rheic ocean. Gondwana Research, 17(2-3), 194—222. https://doi.org/10.1016/j.gr. 2009.08.001.

Pozaryski, W., Brochwicz-Lewinski, W., & Tomczyk, H. (1982). Sur le caractere heterochronique de la ligne Teisseyre-Tornquist, entre Europe centrale et orientale. C. R. Acad. Sci., 295(6), 691—697.

Rast, N., & Skehan, J.W. (1983). The evoluti¬on of the Avalonian plate. Tectonophysics, 100, 257—286. https://doi.org/10.1016/0040-1951(83) 90191-9.

Rogers, J.J.W. (1996). A history of continents in the past three billion years. The Journal of Geology, 104(1), 91—107. https://doi.org/10.1086/629803.

Rogers, J.J.W., & Santosh, M. (2002) Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5, 5—22. http://dx.doi.org/10.1016/S1342-937X(05)70883-2.

Starostenko, V.I., Murovskaya, A.V., Yegorova, T.P., Gintov, O.B., & Amashukelі, T.A. (2022). The relationship of the oil and gas fields of the Forecarpathian region with the regional faults system and deep structure. Геофиз. журн. Т. 44. № 1. С. 111—123. https://doi.org/10.24028/gzh.v44i1.253713.

Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Środa, P., Grad, M., Kovacs, I., Stephen¬son, R., Lysynchuk, D., Thybo, H., Artemieva, I.M., Omelchenko, V., Gintov, O., Kutas, R., Gryn, D., Guterch, A., Hegedűs, E., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2013). Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049—1072. https://doi. org/10.1016/j.tecto.2013.07.008.

Starostenko, V., Janik, T., Mocanu, V., Stephenson, R., Yegorova, T., Amashukeli, T., Czuba, W., Środa, P., Murovskaya, A., Kolomiyets, K., Lysynchuk, D., Okoń, J., Dragut, A., Omelchenko, V., Legostaieva, O., Gryn, D., Mechie, J., & Tolkunov, A. (2020). RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians — From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 794, 228620. https://doi.org/10.1016/j.tecto.2020.228620.

Torsvik, T.H., Van der Voo, R., Preeden, U., Niocaill, C.M., Steinberger, B., Doubrovine, P.V., Van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., & Cocks, R.L.M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4), 325—368. https://doi.org/10.1016/j.earscirev.2012.06.007.

Swidzinski, H. (1953). Mapa geologiczna Karpat Polskich. 1:200 000. Warszawa.

Zielhuis, A., & Nolet, G. (1994). Deep seismic expression of an ancient plate boundary in Europe. Science, 265, 79—81. https://doi.org/10. 1126/science.265.5168.7.

Published

2023-02-22

How to Cite

Gintov, O. ., Tsvetkova, T., Bugaenko, I. ., Zayats, L. ., & Murovska, G. . (2023). The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development. Geofizicheskiy Zhurnal, 44(6), 63–87. https://doi.org/10.24028/gj.v44i6.273640

Issue

Section

Articles