Contrasting lithospheric geophysical structure of the Black Sea subbasins: Relevance to testing geotectonic models for this mega depression

Authors

  • O. Rusakov
  • V. Starostenko
  • I. Pashkevich
  • R. Kutas

DOI:

https://doi.org/10.24028/gj.v45i1.275178

Keywords:

Black Sea, subbasins, lithosphere parameters, rifting, crustal types, crystalline crust faults, tectonic evolution

Abstract

We present an integrated analysis of the geophysical parameters of the lithosphere of Black Sea basin obtained as a result of the interpretation of magnetic, gravity, thermal, deep seismic sounding and seismic-tomographic data. It first demonstrates inherent significant differences in geophysical parameters of lithosphere in the Western and Eastern Black Sea subbasins existing from the prerift stage. The set of reviewed parameters responsible for formation of the present-day lithosphere includes types of crust, depths to acoustic basement, configuration of subbasins, depths to Moho, heat flow and relief of the thermal-asthenosphere boundary (LAB), trends of main deep faults of the crystalline crust, their kinematic types, occurring linear magnetic anomalies, velocity pattern of subcrustal mantle. The above-mentioned parameters of the lithosphere are indicators of the age, geodynamics and driving mechanisms for opening of a subbasins. Oblique trends of the subbasins and the topography of Moho discontinuity in the west and east domains, oblique striking of pre-rifting Istanbul zone and the Shatsky Ridge and different trends of deep faults in the crystalline crust suggest distinct lithospheric structure existing from pre-opening of the Black Sea subbasins and different geodynamical conditions of its formation. The Odesa-Sinop-Ordu deep fault zone as a direct continuation of the Golovanivskaya suture zone of the Ukrainian shield and its slope, probably is of the Precambrian age. So it could be the tectonic boundary between two segments of pre-rift continental crust and between future subbasins. The examples illustrate how indicated parameters of the lithosphere can geophysically confirm the basic ideas of available models for geodynamics of the Black Sea.

References

Ates, A., Blim, F., Buyuksarac, A., Aydemir, A., Bektas, O., & Aslan, Y. (2012). Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surveys in Geophysics, 33(5), 869—885. https://doi.org/10.1007/s10712-012-9195-x.

Banks, C.L., & Robinson, A.G. (1997). Mesozoic strike-slip back-arc basin of the Western Black Sea region. In Regional and Patroleum Geology of the Black Sea and Surrounding Region (pp. 53—62). AAPG Memoir 68.

Chekunov, A.V. (1987). Problems of the Black Sea Depression. Geofizicheskiy Zhurnal, 9(4), 3—25 (in Russian).

Chekunov, A.V. (Ed.). (1992). Scheme of the lithosphere deep structure of the south-west part of the East-European platform. Kiev: Goscomgeologia, 6 p. (in Russian).

Çinku, M.C, Hisarli, Z.M., Orbay, N., Ustaömer, T., Hirt, A.M., Kravchenko, S., Rusakov, O., & Sayın, N. (2013). Evidence of Early Cretaceous remagnetization in the Crimean Peninsula: a palaeomagnetic study from Mesozoic rocks in the Crimean and Western Pontides, conjugate margins of the Western Black Sea. Geophysical Journal International, 195, 821843. https://doi.org/10.1093/gji/ggt260.

Cloetingh, S., Spadini, G., Van Wees, J.D., & Beekman, F. (2003). Thermo-mechanical modelling of the Black Sea Basin deformation. Sedimentary Geology, 156, 169—184. https://doi.org/10.1016/S0037-0738(02)00287-7.

Eyuboglu, Y., Santosh, M., Dudas, F.O., Akarya, I.E., Chung, S.-L., Akdağ, K., & Bektaş, O. (2012). The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the Eastern Pontides, NE Turkey. Geosciences Frontiers, 4(4), 353—375. http://dx.doi.org/10.1016/j.gsf.2012.10.001.

Finetti, I., Bricchi, G., Del Ben, A., Pipan, M., & Xuan, Z. (1988). Geophysical study of the Black Sea. Bolletino di Geofisica Teorica ed Applicata, 117-118, 197—324.

Gintov, O.B. (2015). Problems of geodynamics of the Ukrainian Shield in the Precambrian. Geofizicheskiy Zhurnal, 37(5), 3—22 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111142.

Golonka, J. (2004). Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1), 235—273. https://doi.org/10.1016/j.tecto.2002.06.004.

Graham, R., Kaymakci, N., & Horn, B.W. (2013). The Black Sea: Something different? Geo ExPro, October (pp. 60—61).

Gürbüz, A. (2010). Geometric characteristics of pull apart basins. Lithosphere, 2(3), 199—206. https://doi.org/10.1130/L36.1.

Kobolev, V.P. (2003). Geodynamic model of the Black Sea megadepression. Geofizicheskiy Zhurnal, 25(2), 15—35 (in Russian).

Kravchenko, S.N., Orliuk, M.I., & Rusakov, O.M. (2003). A new approach to the inter-pretation of the West Black Sea magnetic anomaly. Geofizicheskiy Zhurnal, 25(2), 135—144 (in Russian).

Kutas, R.I. (2020). Geotectonic and geothermal conditions of the gas discharge zones in the Black Sea. Geofizicheskiy Zhurnal, 42(5), 16—52. https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215070 (in Russian).

Liu, Y., & Konietzky, H. (2018). Particle-based modeling of pull-apart basin development. Tectonics, 37, 343—358. https://doi.org/10.1002.

Makarenko, I.B., Starostenko, V.I., Kuprienko, P.Ya., Savchenko, O.S., & Legostaeva, O.V. (2021). Heterogeneity of the Earth’s crust of Ukraine and adjacent regions inferred from 3D gravity modelling. Kyiv: Naukova Dumka, 204 p. (in Ukrainian).

McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25—32. https://doi.org/10.1016/0012-821X(78)90071-7.

Meijers, M.J.M., Kaymakci, N., van Hinsbergen, D.J.J., Langereis, C.G., Stephenson, R.A., & Hippolyte, J.C. (2010a). Late Cretaceous to Paleocene oroclinal bending in the central Pon¬tides (Turkey). Tectonics, 29(4), TC4016. https://doi.org/10.1029/2009TC002620.

Meijers, M.J., Langereis, C.G., van Hinsbergen, D.J.J., Kaymakci, N., Stephenson, R.A., & Altıner, D. (2010b). Jurassic-Cretaceous low paleolatitudes from the circum-Black Sea region (Crimea and Pontides) due to True Polar Wander. Earth and Planetary Science Letters, 296(3-4), 210—226. https://doi.org/10.1016/j.epsl.2010.04.052.

Meredith, D.J. & Egan, S.S. (2002).The geological and geodynamic evolution of the eastern Black Sea: insights from 2-D and 3-D tectonic modelling. Tectonophysics, 350(2), 157—179. https://doi.org/10.1016/S0040-1951(02)00121-X.

Molnar, P. (2015). Plate Tectonics. A very Short Introduction. Oxford: Oxford University Press, 136 p.

Nikishin, A.M., Korotaev, M.V., Ershov, A.V., & Brunet, M.F. (2003). The Black Sea basin: tectonic history and Neogene–Quaternary rapid subsidence modelling. Sedimentary Geology, 156(1-4), 149—168. https://doi.org/10.1016/S0037-0738(02)00286-5.

Nikishin, A.M., Okay, A, Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration re¬gional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 656—670. http://dx.doi.org/10.1016/j.marpetgeo.2014.08.017.

Okay, A., & Nikishin, M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 10511076. http://dx.doi.org/10.1080/00206814.2015.1010609.

Okay, A.I., & Görür, N. (2000). Kinematic tectonic evolution models for the Black Sea and its effect on the surrounding regions. AAPG Search and Discovery Article #90024©2000 AAPG Regional International Conference, Istanbul, Turkey, July 9—12, 2000.

Okay, A.I., Şengör, A.M.C., & Görür, N. (1994). Kinematic history of the opening of Black Sea and its effect on surrounding regions. Geology, 22(3), 267—270. https://doi.org/10.1130/0091-7613(1994)022˂0267:KHOTOO>2.3.CO;2.

Rangin, C., Bader, A.G., Pascal, C., Ecevitoğlu, B., & Görür, N. (2002). Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multichannel seismic survey (BLACKSIS cruise). Marine Geology, 182(3-4), 265—278. https://doi.org/10.1016/S0025-3227(01)00236-5.

Robinson, A.G., Sphicadini, G., Cloetingh, S. & Rudat, J. (1995). Stratigraphic evolution of the Black Sea: inferences from basin modelling. Marine and Petroleum Geology, 12(28), 821—835. https://doi.org/10.1016/0264-8172 (95)98850-5.

Rusakov, O.M., & Kutas, R.I. (2018). Mantle origin of methane in the Black Sea. Geofizi-cheskiy Zhurnal, 40(5), 191—207. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147482.

Rusakov, O.M., & Pashkevich, I.K. (2017). The decisive role of the crystalline crust faults in the Black Sea opening. Geofizicheskiy Zhurnal, 39(1), 3—16. https://doi.org/10.24028/gzh.0203.

Saribudak, M. (1989). A palaeomagnetic approach to the origin of the Black Sea. Geophysical Journal International, 99(1), 247—252. https://doi.org/10.1111/j.1365-246X.1989.tb02028.x.Shillington, D.J., White, N., Minshull, T.A., Edwards, G.R.H., Jones, S.M., Edwards, R.A., & Scott, C.L. (2008). Cenozoic evolution of the eastern Black Sea: A test of depth-dependent stretching models. Earth and Planetary Sciences Letters, 265(3), 360—378. https://doi.org/10.1016/j.epsl.2007.10.033.

Schleder, Z., Krezsek, C., Turi, V., Tari, G., Kosi, W., & Fallan, M. (2015). Regional Structure of the western Black Sea Basin: Constraints from Cross-Section Balancing. 4th Annual GCSSEPM Foundation Perkins-Rosen Research Conference. Petroleum Systems in Rift Basins. Houston, TX, USA, 13.16 December (pp. 509520).

Shillington, D.J., Scott, C.L., Minshull, T.A., Edwards, R.A., Brown, P.J., & White, N. (2009). Abrupt transition from magma-starved to magma rich rifting in the eastern Black Sea. Geology, 37(1), 7—10. https://doi.org/10.1130/G25302A.1.

Spadini, G., Robinson, A., & Cloetingh, S. (1996). Western versus eastern Black Sea tectonic evolution. Tectonohysics, 266(1-4), 139—154. https://doi.org/10.1016/S0040-1951(96)00187-4.

Starostenko, V., Buryanov, V., Makarenko, I., Rusakov, O., Stephenson, R., Nikishin, A., Geor¬gi¬ev, G., Gerasimov, M., Dimitriu, R., Lego¬stae¬va, O., Pchelarov, V., & Sava, C. (2004). To¬po¬¬gra¬phy of the crust-mantle boundary be¬ne¬ath the Black Sea basin. Tectonophysics, 381(1-4), 211—233. https://doi.org/10.1016/j.tecto.2002. 08.001.

Starostenko, V.I., Krupskiy, B.L., Pashkevich, I.K., Rusakov, O.M., Makarenko, I.B., Ku-tas, R.I., Gladun, V.V., Legostaeva, O.V., & Lebed, .V. (2011). Fault tectonics and oil and gas potential prospects of the Ukrainian sector of the)he northeastern part of the Black Sea. Fault tectonics and oil and gas potential prospects of the Ukrainian sector of the northeastern part of the Black Sea. Naftova I gazova promyslovist, (1), 1—10 (in Ukrainian).

Starostenko, V.I., Makarenko, I.B., Rusakov, O.M., Pashkevich, I.K., Kutas, R.I., Legostaeva, O.V., & Lebed, T.V. (2010). Geophysical heterogeneity of the lithosphere of the megabasin of the Black Sea. Geofizicheskiy Zhurnal, 32(5), 3—20. https://doi.org/10.24028/gzh.0203-3100.v32i5.2010.117496 (in Russian).

Starostenko, V.I., Rusakov, O.M., Pashkevich, I.K., Kutas, R.I., Makarenko, I.B., Legostaeva, O.V., Lebed, T.V., & Savchenko, A.S. (2015). Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geofizicheskiy Zhurnal, 37(2), 3—28. https://doi.org/10.24028/gzh.0203-3100.v37i2.2015.111298.

Stephenson, R., & Schellart, W.P. (2010). The Black Sea back-arc basin: insight to its origin from geodynamic models of modern analogues. In M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. (Vol. 340, pp. 307—321). Geol. Soc., London, Spec. Publ. https://doi.org./10.1144/ SP340.2.

Stephenson, R., & Stovba, S. (2022). Review of the main Black Sea rifting phase in the Cretaceous and implications for the evolution of the Black Sea lithosphere. Journal of Geodynamics, 149, 101891. https://doi.org/j.jog.2021.101891.

Stovba, S.M., Popadyuk, I.V., Fenota, P.O., & Khriatchevskaia, O.I. (2020). Geological structure and tectonic evolution of the Ukrainian sector of the Black Sea. Geofizicheskiy Zhurnal, 42(5), 53—104. DOI:https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215072.

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2017). Seismic visualization of plumes and super deep fluids in mantle under Ukraine. Geofizicheskiy Zhurnal, 39(4), 42—54 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v39i4.2017.107506.

Yegorova, T., & Gobarenko, V. (2010). Structureof the Earth’s crust and upper mantle of the West- and East Black Sea Basins revealed from geophysical data and its tectonic implications. In: R.A. Stephenson, N. Kaymakci, M. Sosson, V. Starostenko, & F. Bergerat (Eds.), Sedimentary basin. Tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 23—42). Geol. Soc., London, Spec. Publ. https://doi.org/10.1144/SP340.3.

Ziegler, P.A. & Dėzes, P. (2006). Crustal evolution of Western and Central Europe. Geol. Soc., London, Memoirs, 32(1), 43—56. https://doi:10.1144/GSL.MEM.2006.032.01.03.

Zonenshain, L.P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophys, 123(1-4), 181—211. https://doi.org/10.1016/0040-1951(86)90197-6.

Downloads

Published

2023-03-22

How to Cite

Rusakov, O., Starostenko, V., Pashkevich, I., & Kutas, R. (2023). Contrasting lithospheric geophysical structure of the Black Sea subbasins: Relevance to testing geotectonic models for this mega depression. Geofizičeskij žurnal, 45(1). https://doi.org/10.24028/gj.v45i1.275178

Issue

Section

Articles