Semi-empirical model of the spatiotemporal surface temperature distribution on the plain part of Ukraine

Authors

  • S. Boychenko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • N. Maidanovych UkrNDIPVT Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i2.278328

Keywords:

average annual and monthly temperature, climatic norm, semi-empirical model, altitudinal, latitudinal, and longitudinal gradients

Abstract

The spatial variation of temperature is found to depend linearly on climate continentality, morphology of the relief, the position of the site with respect to seas, in addition to the usual elevation, latitude and longitude predictors. There are other factors that can have an additional significant influence: big bodies of water, terrain attributes relief, atmospheric factors (local circulation), configuration and aspect of coasts and vegetation. Therefore, these multifactorial influences form the climatic field of temperature.

In this study, the regional semi—empirical model of the spatiotemporal distribution of the average annual and monthly temperature for the plain part of Ukraine on the basis of the methodology for assessing the influence of height above sea level and geographic coordinates is proposed. Based on the method for determining the altitudinal, latitudinal, and longitudinal gradients of meteorological parameters, we calculated these gradients for annual and monthly air surface temperature for the periods 1961—1990 and 1991—2020.

Thus, on the plain part of Ukraine, the annual surface air temperature decreases by an average on 0.60—0.63 °C with a shift of 100 m height above sea level, on 0.51—0.55 °C with a shift of one latitude degree to the north, on 0.067—0.071 °C with a shift of one longitude degree to the east. Also, the variations of these annual mean temperature gradients from year to year over the period 1991—2020 are characteristic.

The seasonal variation of gradients has a pronounced non—monotonic character: highest values of altitudinal gradientare typical for July—August (from –0.63 to –0.73 °C per 100 m), and the lowest values — for April—May (from –0.45 to –0.55 °C per 100 m); highest values of latitudinal gradient are typical for August—September (from –0.60 to –0.70 °С per 1 °N), and the lowest values — for April—May (from –0.20 to –0.35 °С per 1° N); the longitudinal gradients have positive values in June—August (0.074—0.128 °C per 1° E), and negative values in November—March (from –0.228 to –0.154 °C per 1° E).

We found that the altitudinal and latitudinal gradients of temperature have the most spatiotemporal variability and the longitudinal gradient has the smallest one. Greatest variabilities of temperature gradient values are typical for February—March and July—September, and the least variability — for April—May.

The analysis of the dynamics of gradient changes in the period 1991—2020 compared to the period 1961—1991 showed the following: the altitudinal gradientvalues increased by 8—13 %. in January and March—May; the latitudinal gradient values increased by ~30 % in December—February and decreased by ~20 % in May—August.

The proposed semi—empirical model contains a coefficient that takes into account influence of additional effects associated with pronounced orographic and other terrain features. This study presents the numerical values of this coefficient for some specific microclimate regions of the plain part of Ukraine.

The model estimates of thirty—year monthly mean temperature in Ukraine for the periods 1961—1990 and 1991—2020was calculated. A comparison of the model estimates of of the average annual and monthly temperature for 72 meteostations in Ukraine with their actual values showed a statistically significant correlation (the reliability of the linear approximation is 0.89—0.98). Thus, the presented design of the semi-empirical model makes it possible to quite well restore the annual and monthly temperature on the territory of Ukraine

References

Boer, E.P.J., De Beurs, K.M., & Hartkamp, A.D. (2001). Kriging and thin plate splines for mapping climate variables. International Journal of Applied EarthTC Journal., 3(2), 146—154.https://doi.org/10.1016/S0303-2434(01)85006-6.

Boychenko, S., Maidanovych, N., & Zabarna, O. (2022). Assessing the influence of height above sea level and geographic coordinates on surface air temperature values for a plain part of Ukraine. European Association of Geoscientists & Engineers: 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (pp. 1—5).https://doi.org/10.3997/2214-4609.2022580191.

Boychenko, S. (2008). Semi-Empirical Models and Scenarios of Global and Regional Changes of Climate. V. Voloshchuk (Ed.). Kyiv: Naukova Dumka, 310 p. (in Ukrainian).

Boychenko, S., & Serdyuchenko, N. (2005). Assessment of the dependence of the parameters of regional climatic fields on the height above sea level. Geofizicheskiy Zhurnal, 27(5), 858—867. https://www.researchgate.net/publication/342081987.

Boychenko, S., & Voloshchuk, V.M. (2007). Stochastic semi-empirical model of spatio-temporal transformation of the modern climate of Ukraine. Dopovidi NAN Ukrainy,(1), 105—111 (in Russian).

Boychenko, S., Voloshchuk, V., Kuchma, T., & Serdyuchenko, N. (2018). Long-time changes of the thermal continentality index, the amplitudes and the phase of the seasonal temperature variation in Ukraine. Geofizicheskiy Zhurnal, 40(3), 81—96. https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137175.

Busuioc, A., Dumitrescu, A., Soare, E., & Orzan, A. (2007). Summer anomalies in 2007 in the context of extremely hot and dry summers in Romania. Romanian Journal of Meteorology, 9(1-2), 1—17.

CGO: Central Geophysical Observatory of empirical data. (2021). Retrieved from http://cgo-sreznevskyi.kyiv.ua/index.php?lang=en&fn=u_klimat&f=ukraine&p=1.

Claps, P., Giordano, P., & Laguardia, G.(2008). Spatial Distribution of the Average Air Temperatures in Italy: Quantitative Analysis. Journal of Hydrologic Engineering, 4, 242—249. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:4(242).

Daly, Ch., Gibson, W., Taylor, G., Johnson, G., & Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99—113. https://doi.org/10.3354/cr022099.

de Castro, M., Gallardo, C., Jylha, K., & Tuomenvirta, T. (2007). The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81, 329—341. https://doi.org/10.1007/s10584-006-9224-1.

Founda, D., & Giannakopoulos, C. (2009). The exceptionally hot summer of 2007 in Athens, Greece — a typical summer in the future climate? Global and planetary change, 67(3-4), 227—236. https://doi.org/10.1016/j.gloplacha. 2009.03.013.

Habit, E., Zurita, A., Díaz, G., Manosalva, A., Arriagada, P., Link, O., & Górski, K. (2022). Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers. Water, 14, 2614. https://doi.org/10.3390/w14172614.

Hutchinson, M.F. (1995). Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Informa¬tion Systems, 9, 385—403. https://doi.org/10.1080/ 02693799508902045.

Johansson, B. (2000). Areal Precipitation and Temperature in the Swedish mountains. An Evaluation from a Hydrological Perspective. Hydrology Research, 31(3), 207—228. https://doi.org/10.2166/nh.2000.0013.

Kusuma, D., Murdimanto, A., Sukresno, B., Jatisworo, D., & Hanintyo, R. (2018).Comparison of interpolation methods for sea surface temperature data. Journal of Fisheries and Marine Science, 2(2), 103—115.https://doi.org/10.21776/ub.jfmr.2018.002.02.7.

Lipinskyy, V., Dyachuk, V., & Babichenko, V. (Eds.). (2003). The Climate of Ukraine. Kyiv: Raevskyy Publishing, 344 p. (in Ukrainian).

Lookingbill, T.R., & Urban, D.L. (2003). Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agricultural and Forest Meteorology, 114, 141—151. https://doi.org/10.1016/S0168-1923(02)00196-X.

Marynych, O.M., & Stetsenko, E.I. (2006). Geographical encyclopedia of Ukraine. Kyiv: Publ. of the Institute of Encyclopedic Research of the National Academy of Sciences of Ukraine (in Ukrainian). Retrieved from https://esu.com.ua/article-29102.

Mcroberts, B., & Nielsen-Gammon, J. (2011). A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change. Journal of Applied Meteorology and Climatology, 50, 1187—1199. https://doi.org/10.1175/2010JAMC2626.1.

Nalder, I.A., & Wein, R.W. (1998). Spatial Interpolation of Climatic Normals: Test of a New Method in the Canadian Boreal Forest. Agricultural and Forest Meteorology, 92, 211—225. https://doi.org/10.1016/S0168-1923(98)00102-6.

Ninyerola, M., Pons, X., & Roure, J. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Jour¬na¬lof Climatology, 20(14), 1823—1841. https://doi. org/10.1002/1097-0088(20001130)20:14<1823: :AID-JOC566>3.0.CO;2-B.

Oliver, J.E. (Ed.). (2005). Encyclopedia of World Climatology. Berlin, Heidelberg, New York. Berlin: Springer Science & Business Media, 874 р.

Piazza, A., Conti, F., Viola, F., Eccel, E., & Noto, L. (2015). Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water, 7, 1866—1888. https://doi.org/10.3390/w7051866.

Price, D., Mc Kenney, D., Nalder, I., Hutchinson, M., & Kesteven, J. (2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data Agricultural and Forest Meteorology, 101, 81—94. https://doi.org/10.1016/S0168-1923(99)00169-0.

Rutishauser, T., Luterbacher, J., Defila, C., Frank, D., & Wanner, H. (2008). Swiss spring plant phenology 2007: Extremes, a multicentu¬ry perspective, and changes in temperature sensitivity. Geophysical Research Letters, 35(5). https://doi.org/10.1029/2007GL032545.

Serbin, S., & Kucharik, C. (2009). Spatiotemporal Mapping of Temperature and Precipitation for the Development of a Multidecadal Climatic Dataset for Wisconsin Journal of Applied Meteorology and Climatology, 48, 742—757. https://doi.org/10.1175/2008JAMC1986.1.

Skrynyk, O.A., Osadchyi, V.I., Szentimrey, T., Bihari, Z, Sidenko, V.P., Oshurok, D.O., Boichuk, D.O., & Skrynyk, O.Y. (2020). Spatial interpolation of climatological data with relief and physicogeographical peculiarities of the territory of Ukraine. Ukrainian Geographical Journal, 110, 13—19. https://doi.org/10.15407/ugz2020.02.013 (in Ukrainian).

Smith, T.B., Smith, N., & Weleber, R.G. (2017). Comparison of nonparametric methods for static visual field interpolation. Medical &Biological Engineering & Computing, 55(1), 117—126. https://doi.org/10.1007/s11517-016-1485-x.

The Climate Cadastre of Ukraine (standard norms for the period 1961—1990), CGO. (2005). Kyiv, 48 p. (in Ukrainian).

Tutmez, B., Kaymak, U., & Tercan, A.E. (2012). Lo¬cal spatial regression models: a comparati¬ve analysis on soil contamination. Stochastic en¬vironmental research and risk assessment, 26(7), 1013—1023. https://doi.org/10.1007/s00477-011-0532-2.

Unkašević, M., & Tošić, I. (2011). The maximum temperatures and heat waves in Serbia during the summer of 2007. Climatic change, 108(1), 207—223. https://doi.org/10.1007/s10584-010-0006-4.

Voloshchuk, V., & Boychenko, S. (2003). Scenarios of possible changes of climate of Ukraine in 21th century (under influence of global anthro¬pogenic warming). In Lipinskyy, V., Dyachuk, V., Babichenko, V. (Eds.), The Climate of Ukraine (pp. 308—331). Kyiv: Raevsky Publishing (in Ukrainian).

Vrac, M., Stein, M., Hayhoe, M., & Liang, X.-Z. (2007). A general method for validating statistical downscaling methods under future climate change. Geophysical Research Letters, 34, L18701. https://doi.org/10.1029/2007GL030295.

Zhang, M., & Von Storch, H. (2022). Determining Interannual Variability of the Annual Cycle. Preprints, 2022080319. https://doi.org/10.20944/preprints202208.0319.v1.

Downloads

Published

2023-05-14

How to Cite

Boychenko, S., & Maidanovych, N. (2023). Semi-empirical model of the spatiotemporal surface temperature distribution on the plain part of Ukraine. Geofizicheskiy Zhurnal, 45(2). https://doi.org/10.24028/gj.v45i2.278328

Issue

Section

Articles