Numerical simulation of the radioactive contamination of Ukraine after the Chornobyl disaster: the influence of the input meteorological data on the results uncertainty

Authors

  • O.Y. Skrynyk Ukrainian Hydrometeorological Institute SES and NAS of Ukraine, Kyiv, Ukraine, Ukraine
  • S.M. Bubin Department of Physics, Nazarbayev University, Astana, Kazakhstan, Kazakhstan

DOI:

https://doi.org/10.24028/gj.v45i2.278332

Keywords:

Chornobyl disaster, radioactive contamination, Cs-137, atmospheric transport and dispersion, wet and dry deposition, numerical simulation, uncertainty, WRF, CALPUFF

Abstract

In this article we assess the sensitivity of the numerical simulations of the radioactive 137Cs contamination of Ukraine caused by the Chornobyl nuclear power plant accident in 1986 to the input meteorological data. The atmospheric transport, dispersion, and deposition (dry scavenging and rain washout) of the radioactive aerosols was simulated using the CALPUFF dispersion model. The source parameterization of the 137Cs emissions during the active phase of the catastrophe (26 April—May 5 of 1986) was adopted from the previously published literature results. Seventeen different versions/realizations of the input meteorology for CALPUFF simulations were prepared with the regional prognostic meteorological model WRF by combining the available global atmospheric reanalyses for 1986 (NNRP, ERA-Interim, ERA5, CFSR) and the model’s physical parameterizations (microphysics, radiation processes, boundary/surface layer physics). The assessment of the simulation uncertainty was carried out in two different ways. In the first approach, the uncertainty was estimated as the width of the distribution of the calculated 137Cs surface concentrations (adjusted to the logarithmic scale), which were obtained with different versions of the input meteorology. The second approach was based on the statistical comparison of the calculated 137Cs contaminations and the corresponding measured values obtained during a complex assessment of the aftermath of the disaster made at the beginning of 1990s. Two statistical metrics were used: the geometric mean bias and the geometric mean variance. The results of our study demonstrate that even when using somewhat unified meteorological data (atmospheric reanalysis), the results of the radioactive contamination calculations at the same spatial locations can differ by several orders of magnitude. We find that the uncertainty depends not only on the distance to the source of the emissions but also on the physical mechanism (wet or dry deposition) responsible for the formation of the local contamination

References

Skrynyk, O.Ya., & Hrytsyuk, Yu.Ya. (2007). Mechanism of forming a large scale «spot-like» structure of polluted area by powerful gas-aerosol source within the boundary layer of the atmosphere. Geofizicheskiy Zhurnal, 29(4), 191—198 (in Ukrainian).

Voloshchuk, V.M., Skrynyk, O.Ya., & Hrytsyuk, Yu.Ya. (2007). A mechanism of the formation of a large-scale spot-like pollution structure of the underlying surface under intense aerosol injections into the atmospheric boundary layer. Dopovidi NAN Ukrainy, (4), 115—120 (in Ukrainian).

Arnold, D., Maurer, C., Wotawa, G., Draxler, R., Saito, K., & Seibert, P. (2015). Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident. Journal of Environmental Radioactivity, 139, 212—225. https://doi.org/10.1016/j.jenvrad.2014.02.013.

De Cort, M., Dubois, G., Fridman, Sh.D., Ger¬men¬chuk, M.G., Izrael, Yu.A., Jans¬sens, A., Jones, A.R., Kelly, G.N., Kvas¬ni¬ko¬va, E.V., Mat¬ve¬enko, I.I., Nazarov, I.M., Po¬ku¬meiko, Yu.M., Si¬tak, V.A., Stukin, E.D., Ta¬bach¬ny, L.Ya., Tsa¬tu¬rov, Yu.S., & Avdyushin, S.I. (1998). Atlas of caesium deposition on Europe after the Chernobyl accident. Luxembourg, Office for Official Publication of the European Communities.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Bal¬maseda, M.A., Balsamo, G., Bauer, P., Bech¬told, P., Beljaars, A.C.M., van de Berg, L., Bid¬lot, J., Bormann, N., Delsol, C., Draga¬ni, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isak¬sen, L., Kållberg, P., Köhler, M., Matricar¬di, M., McNally, A.P., Monge-Sanz, B.M., Mor¬¬cret¬te, J.-J., Park, B.-K., Peubey, C., de Ros¬nay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553—597. https://doi.org/10.1002/qj.828.

Draxler, R.R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., & Wotawa, G. (2013). World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. Journal of Environmental Radioactivity, 139, 172—184, https://doi.org/10.1016/j.jenvrad.2013.09.014.

Giaiotti, D., Oshurok, D., & Skrynyk, O. (2018). The Chernobyl nuclear accident Cs-137 cumulative depositions simulated by means of the CALMET/CALPUFF modelling system. Atmospheric Pollution Research, 9(3), 502—512. https://doi.org/10.1016/j.apr.2017.11.007.

Hersbach,H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., & Thépaut, J.N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999—2049. http://doi.org/10.1002/qj.3803.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Dea¬ven, D., Gandin, L., Iredell, M., Saha, S., Whi¬te, G., Woollen, J., Zhu, Y., Chelliah, M., Ebi¬suzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437—471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Khalchenkov, A., & Kovalets, I. (2021). Evaluation of Spectral/Grid Nudging Methods for Weather Analysis and Forecasting in Kyiv Region with the Use of WRF Mesoscale Meteorological Model. In S. Shkarlet, A. Morozov, A. Palagin, (Eds.), Mathematical Modeling and Simulation of Systems (MODS’2020) (Vol. 1265, pp. 13—23). Springer, Cham. https://doi.org/ 10.1007/978-3-030-58124-4_2.

Kovalets, I.V., Asker, C., Kchalchenkov, A.V., Persson, C., & Lavrova, T.V. (2017). Atmospheric dispersion of radon around uranium mill tailings of the former Pridneprovsky Chemical Plant in Ukraine. Journal of Environmental Radioactivity, 172, 173—190. http://dx.doi.org/10. 1016/j.jenvrad.2017.03.025.

Leadbetter, S.L., Hort, M.C., Jones, A.R., Webster, H.N., & Draxler, R.R. (2015). Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Daiichi nuclear power plant to the wet deposition arameterization in NAME. Journal of Environmental Radioactivity, 139, 200—211. https://doi.org/10.1016/j.jenvrad.2014.03.018.

Leelőssy, A., Lagzi, I., Kovács, A., & Mészáros, R. (2018). A review of numerical models to predict the atmospheric dispersion of radionuclides. Journal of Environmental Radioactivity, 182, 20—33. https://doi.org/10.1016/j.jenvrad. 2017.11.009.

Lo, J.C.F., Yang, Z.L., & Pielke, R.A. (2008). Assessment of three dynamical climate downsca¬ling methods using the weather research and forecasting (WRF) model. Journal of Geophysical Research, 113, D09112. https://doi.org/10.1029/2007JD009216.

Miguez-Macho, G., Stenchikov, G.L., & Robock, A. (2004). Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. Journal of Geophysical Research, 109, D13104. https://doi.org/10.1029/2003JD004495.

Mosca, S., Graziani, G., Klug, W., Bellasio, R., & Bianconi, R. (1998). A statistical methodology for the evaluation of long-range dispersion models: an application to the ETEX exercise. Atmospheric Environment, 32(24), 4307—4324. https://doi.org/10.1016/S1352-2310(98)00179-4.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woolen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., & Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bul¬letin of the American Meteoro¬lo¬gical Society, 91, 1015—1057. https://doi.org/10.1175/ 2010BAMS3001.1.

Scire, J.S., Robe, F.R., Fernau, M.E., & Yamartino, R.J. (2000a). A user’s guide for the CALMET meteorological model Version 5. Earth Tech Inc., Concord, MA.

Scire, J.S., Strimaitis, D.G., & Yamartino, R.J. (2000b). A user’s guide for the CALPUFF (Version 5) dispersion model. Earth Tech Inc, Concord, MA.

Scire, J.S., Strimaitis, D.G., Wu, Z.-X., Klausmann, A., Popovic, E. (2012). Assessment of EPA’s ETEX evaluation study. 10th Conference of Air Quality Models, March 14—16, 2012, RTP, North Carolina.

Skamarock, W.C., & Klemp, J.B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applicati¬ons. Journal of Computational Physics, 227(7), 3465—3485. https://doi.org/10.1016/j.jcp.2007. 01.037.

Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953—1963. https://doi.org/10.1016/j.apr.2019.09.001.

Talerko, N. (2005). Mesoscale modeling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. Journal of Environmental Radioactivity, 78(3), 311—329. https://doi.org/10.1016/j.jenvrad.2004.04.008.

Talerko, M., Kovalets, I., Lev, T., Igarashi, Y., & Romanenko, O. (2021). Simulation study of ra¬dionuclide atmospheric transport after wild land fires in the Chernobyl Exclusion Zone in April 2020. Atmospheric Pollution Research, 12(3), 193—204. https://doi.org/10.1016/j.apr. 2021.01.010.

Voloshchuk, V.M., & Shkvorets, O.Yu. (1993). Possible influence of meteorological conditions and changes aerosol source parameters on the spot structure formation of ground radioactive contamination. Journal of Aerosol Science, 24(1), 531. https://doi.org/10.1016/0021-8502(93)90358-G.

WRF. (2015). WRF Physics Use Survey. Retrieved from https://www2.mmm.ucar.edu/wrf/users/physics/wrf_physics_survey.pdf.

WRF. (2019). Weather Research & Forecasting Model. ARW. Version 4. Modeling System User’s Guide.

Published

2023-05-14

How to Cite

Skrynyk, O., & Bubin, S. (2023). Numerical simulation of the radioactive contamination of Ukraine after the Chornobyl disaster: the influence of the input meteorological data on the results uncertainty. Geofizicheskiy Zhurnal, 45(2). https://doi.org/10.24028/gj.v45i2.278332

Issue

Section

Articles