Dynamics of tidal parameters depending on the landslide hazard condition of the salt mine roof

Authors

  • A.M. Kutnyi S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • V.G. Pavlyk S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • T.M. Babych S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • V.P. Plis S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i3.282416

Keywords:

landslide hazard zone, tilt observations, harmonic analysis, tidal parameters, dynamics of tidal parameters

Abstract

The dynamics of tidal parameters were studied based on the results of tilt observations in 4 points of the landslide hazard zone, which was formed over the exhausted field of a salt mine in the city of Soledar, Donetsk region. The reduction in the thickness of the supporting walls of the salt mine led to the loss of their supporting stability, which led to the lowering of the ground, the destruction of the foundations and walls of residential and administrative buildings in a plot 1.3 km long and 0.5 km wide. To eliminate the risk of collapse, the used underground galleries were filled with salt in order to strengthen their retaining walls.Thus, the landslide hazard zone has become a unique training ground for studying the change in tidal parameters γ and Δϕ depending on the state of the mine roof. In total, 256 continuous hourly monthly series were processed using modern methods of excluding their linear drift and anomalous meteorological disturbances from the initial data at short observation intervals, which made it possible to significantly increase the accuracy of determining tidal parameters based on the results of harmonic analysis. For the first time in the global earth tide practice, the normalization of the tilt parameters during and after strengthening the collapsing roof of the mine was revealed. If before the strengthening of the supporting walls of the underground galleries, the tidal parameters assumed abnormal values (the amplitude factor γ by 30 %, and the phase factor Δϕ by 10—15 degrees differed from the regional analogues), then in the process of backfilling they began to approach their regional values, which they reached a year after the backfilling. The real possibility of using the earth tide method for monitoring and forecasting the landslide hazard and related phenomena of the ground has been proven.

References

Balenko, V.G., & Kutnyy, A.M. (1973). Some results of tilt observations along the Kyiv—Poltava—Artemovsk profile. Vraschenie i prilivnyie deformatsii Zemli, (5), 3—10 (in Russian).

Balenko, V.G., Kutnyy, A.M., & Novikova, A.M. (1979). Tilt measurements in the city of Karlo-Liebknechtovsk under the program of studying the effect of the cavity. Vraschenie i prilivnyie deformatsii Zemli, (11), 18—23 (in Russian).

Balenko, V.G., Kutnyy, A.M., Novikova, A.N., & Aleksandrov, I.M. (1972). Tilts observations in mine No. 1 of the «Artemsol» mine management. Vraschenie i prilivnyie deformatsii Zemli, (4), 20—43 (in Russian).

Balenko, V.G., Ovchinnikov, V.A., Kutnyy, A.M., & Golubitskiy, V.G. (1974). Horizontal pendulum with Zellner suspension on metal threads. Vraschenie i prilivnyie deformatsii Zemli, (6), 3—15 (in Russian).

Yevtushenko, E.I. (1966). Results of tilt observations in Donbass in 1960. In The Earth tides (pp. 51—59). Kiev: Naukova Dumka (in Russian).

Kutnyy, A.M. (1974). Influence of meridional faults on tidal tilts. Vraschenie i prilivnyie deformatsii Zemli, (6), 88—92 (in Russian).

Kutnyy, A.M. (1979). Tilt measurements in the landslide zone. Vraschenie i prilivnyie deforma¬tsii Zemli, (11), 3—8 (in Russian).

Kutnyi, A.M., Pavlyk, V.G., & Babich, T.M. (2013). Modeling and separate exception of disturbance in terrestrial observations. Geofizicheskii Zhurnal, 35(2), 157—162. https://doi.org/10. 24028/gzh.0203-3100.v35i2.2013.111359 (in Uk¬¬rainian).

Kutnyi, A.M., Pavlyk, V.H., Bulatsen, V.H., Go¬lu¬bytskyi, V.H., Bohdan, I.Iu., Korba, P.S., Babych, T.M., & Plys, V.P. (2015). Results and analysis of tidal observations on the territory of Ukraine. Geofizicheskii Zhurnal, 37(2), 57—73. https://doi.org/10.24028/gzh.0203-3100.v37i2. 2015.111305 (in Ukrainian).

Kutnyy, A.M., Tokar, V.I., & Nikitina, T.S. (1988). Tidal tilts in the landslide zone. In The study of the Earth as a planet by methods of geophysics, geodesy and astronomy (pp. 171—173). Kiev: Naukova Dumka (in Russian).

Matveev, P.S. (1966) Harmonic analysis of a monthly series of observations of earth tides. In The Earth tides (pp. 51—59). Kiev: Naukova Dumka (in Russian).

Matveev, P.S. (1970). About the possibility of using the observed tilts for the study of the features of the structure of the earth’s crust. Vraschenie i prilivnyie deformatsii Zemli, (1), 72—86 (in Russian).

Matveev, P.S., Golubytskiy, V.H., Bohdan, I.Iu., Dubik, B.S., & Slavynskaya, A.O. (1977). Refined values of the earth tide parameters for the points of the tilt profile Sumy-Kherson. Vraschenie i prilivnyie deformatsii Zemli, (9), 16—33 (in Russian).

Molodenskiy, S.M. (1981). Influence of local homogeneities of the crust and upper mantle on tidal tilts of the earth’s surface. Vraschenie i prilivnyie deformatsii Zemli, (13), 10—13 (in Russian).

Molodenskiy, S.M. (1976). Changing Love’s numbers when varying the scheme of the structure of the Earth. Byulleten Akademii nauk SSSR. Fizika Zemli, (2), 3—14 (in Russian).

Ostrovskiy, A. E. (1961). Tiltmeter with photoelectric registration. In Study of the Earth’s tides (pp. 41—75). Moscow: Publ. House of the Aca¬demy of Sciences of the USSR (in Russian).

Starkov, V.I., & Starkova, E.Ya. (1970). Influence of the fault on the value of γ according to observations in Kondar. Vraschenie i prilivnyie deformatsii Zemli, (1), 241—249 (in Russian).

Khasilev, L.E. (1978). Cavity effect in galleries of some sections. Vraschenie i prilivnyie deformatsii Zemli, (10), 22—80 (in Russian).

Dehant, V. (1987). Tidal parameters for an inelastic Earth. Physics of the Earth and Pla¬ne¬tary Interiors, 49, 97—116. https://doi.org/10. 1016/0031-9201(87)90134-8.

Fabian, M. & Kümpel, H.-J. (2003) Poroelasticity: observations of anomalous near surface tilt induced by ground water pumping. Journal of Hydrology, 281(3), 187—205. https://doi:10. 1016//S0022-1694(03)00234-8.

Gambino, S., Falzone, G., Ferro, A., & Laudani, G. (2014). Volcanic processes detected by tiltmeters: A review of experience on Sicilian volcanoes. Journal of Volcanology and Geothermal Research, 271 (1), 43—54. https://doi:10.1016//j.jvolgeores.2013.11.007.

García, A., Hördt, A., & Fabian, M. (2010). Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology, 120(1-2), 16—25. https://doi:10.1016//j.geomorph.2009.09.011.

Harrison, J.C. (1976). Cavity and topographic effects in tilt and strain measurement. Journal of Geophysical Research: Solid Earth and Planets, 81(2), 319—328. https://doi.org/10.1029/JB081i 002p00319.

Hermann, T., Kroner, C., & Jahr, T. (2013). Geo¬elect¬rical, strain and tilt investigations of hydrological processes at the broadband geodynamical observatory Moxa, Germany. Journal of Applied Geophysics, 98, 90—99. https://doi:10.1016//j.jappgeo.2013.07.007.

Kimura, T., Tanaka, S., & Saito, T. (2013). Ground tilt changes in Japan caused by the 2010 Mau¬le, Chile, earthquake tsunami. Journal of Geo¬physical Research: Solid Earth, 118(1), 406—415. https://doi:10.1029//2012JB009657.

Lesparre, N., Boudin, F., Champollion, C., Chéry, J., Danquigny, C., Seat, H.C., Cattoen, M., Lizi¬on, F., & Longuevergne, L. (2017). New insights on fractures deformation from tiltmeter data measured inside the Fontaine de Vaucluse karst system. Geophysical Journal International, 208(3), 1389—1402. https://doi:10.1093//gji/ggw446.

Longuevergne, L., Florsch, N., Boudin, F., Ou¬din, L., & Camerlynck, C. (2009) Tilt and strain deformation induced by hydrologically active natural fractures: application to the tiltmeters installed in Sainte-Croix-aux-Mines observatory (France). Geophysical Journal International, 178(2), 667—677. https://doi:10.1111//j.1365-246X.2009.04197.x.

Mathews, P.M., Buffett, B.A., & Shapiro, I.I. (1995). Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions. Journal of Geophysical Research: Solid Earth, 100, 9935—9948. https://doi.org/10. 1029/95JB00670.

Medina, L.N., Arcosa, D.F. & Battaglia, M. (2017). Twenty years (1990—2010) of geodetic monitoring of Galeras volcano (Colombia) from continuous tilt measurements. Journal of Volcanology and Geothermal Research, 344, 232—245. doi:10.1016//j.jvolgeores.2017.03.026.

Melchior, P. (1966). The Earth Tides. Pergamon press.

Mentes, G. (2015). Investigation of Dynamic and Kinematic Landslide Processes by Borehole Tiltmeters and Extensometers. Procedia Earth and Planetary Science, 15, 421—427. https://doi:10.1016//j.proeps.2015.08.025.

Pavlyk, V., Kutnyi, A., & Kalnyk, O. (2019). Fea¬tu¬res of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface. Geodynamics, (2), 16—23. https://doi: 10.23939//jgd2019.02.016.

Ricco, C., Petrosino, S., Aquino, I., Gaudio, C., & Fa¬langa, M. (2019). Some Investigations on a Possible Relationship between Ground De¬for¬mation and Seismic Activity at Campi Flegrei and Ischia Volcanic Areas (Southern Italy). Geosciences, 9(5), 222. https://doi:10.3390//geo sciences9050222.

Sleeman, R., Haak, H.W., Bos, M.S., & Gend, J.A. (2000). Tidal tilt observations in the Netherlands using shallow borehole tiltmeters. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25(4), 415—420. https://doi:10.1016//S1464-1895(00)00065-X.

Spottiswoode, S.M., & Milev, A.M. (2006). A study of mine stability using records of ground tilting. Proc. of the 41st US Symposium on Rock Mechanics, Golden Rocks, Colorado, 17—21 June 2006. American Rock Mechanics As¬so¬cia¬tion. Virginia. ARMA/USRMS 06-1168.

Stark, Т.D., & Choi, H. (2008). Slope inclinometers for landslides. Landslides, 5(3), 339—350. https://doi:10.1007//s10346-008-0126-3.

Timofeev, V.Yu., Timofeev, A.V., Ardyukov, D.G., & Boyko, E.V. (2020). Quartz Tiltmeters and their Use in Geophysical Studies. Seismic In¬struments, 56, 134—151. https://doi:10.3103//S0747923920020115.

Venedikov, A.P. (1960). Une methode pour l’a¬nalyse des marees terrestres a partir d’en¬re¬gistrements de longueur arbitraire. Com. Obs. Roy. Belg.№250 Ser. Geophys., 71, 463—485.

Wahr, J.M. (1981). Body tides on en elliptical, rotating, elastic and ocean less Earth. Geophysical Journal of the Royal Astronomical Society, 64, 677—703. https://doi.org/10.1111/j.1365-246X. 1981.tb02690.x.

Published

2023-07-03

How to Cite

Kutnyi, A., Pavlyk, V., Babych, T., & Plis, V. (2023). Dynamics of tidal parameters depending on the landslide hazard condition of the salt mine roof. Geofizicheskiy Zhurnal, 45(3). https://doi.org/10.24028/gj.v45i3.282416

Issue

Section

Articles